首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合理的刚度和潜深设计可以使升沉水平板获得优异的消浪性能。基于考虑流体黏性的二维不可压缩Navier-Stokes方程,以高阶紧致插值CIP(constrained interpolation profile)方法求解方程对流项,采用VOF(volume of fluid)方法重构自由液面,构建二维数值波浪水槽。采用试验数据验证模型后,研究孤立波与升沉水平板相互作用,分析相对刚度K*、相对潜深d/h、相对波高H/h对于升沉板的消浪性能和运动响应的影响,揭示升沉板对孤立波的消浪机理。研究表明:在孤立波通过时,升沉板会经历一个先上升后下降的运动,随后非线性自由振动,板下方水体近似均匀流动,且水流的垂向流动与板的垂荡方向一致;升沉板主要通过不对称涡旋脱落、浅水变形、波浪反射与辐射波转化等方式消耗孤立波能量;一定条件下,采用最优相对刚度K*=4.0和最优相对潜深d/h=0.52可以取得良好的消浪效果,此时透射系数最小,同时升沉板的运动响应在合理的范围内。  相似文献   

2.
Two computations of the KCS model with motions are presented. Self-propulsion in model scale free to sink and trim are studied with the rotating discretized propeller from the Hamburg Model Basin (HSVA) at Fr = 0.26. This case is particularly complex to simulate due to the close proximity of the propeller to the rudder. The second case involves pitch and heave in regular head waves. Computations were performed with CFDShip-Iowa version 4.5, a RANS/DES CFD code designed for ship hydrodynamics. The self-propulsion computations were carried out following the procedure described in Carrica et al. [1], in which a speed controller is used to find the propeller rotational speed that results in the specified ship velocity. The rate of revolutions n, sinkage, trim, thrust and torque coefficients KT, KQ and resistance coefficient CT(SP) are thus obtained. Comparisons between CFD and EFD show that the rate of revolutions n, thrust and torque coefficients KT and KQ have higher prediction accuracies than sinkage and trim. For the simulation of pitch and heave in head waves, the geometry includes KCS hull and rudder under three conditions with two Froude numbers and three wave length and amplitude combinations. 0th and 1st harmonic amplitudes and 1st harmonic phase are computed for total resistance coefficient CT, heave motion z and pitch angle θ. Comparisons between CFD and EFD show that pitch and heave are much better predicted than the resistance. In both cases comparisons with simulations by other authors presented at the G2010 CFD Workshop [2] using different CFD methodologies are included.  相似文献   

3.
垂荡板对半潜式风机基础水动力性能有极大的影响,从而影响基础拖航安装过程的安全。为了研究垂荡板对半潜式基础拖航过程中运动响应的影响,建立了拖缆—WindFloat浮式风机半潜式基础拖航系统模型。首先,基于三维势流理论,采用AQWA开展了拖航系统的频域水动力分析,分析了垂荡板的尺寸及形状对基础水动力性能的影响规律;进一步采用时域方法对拖航系统的运动响应进行分析,探究了垂荡板的尺寸及形状在不同浪向下对基础运动响应的影响规律。结果表明:垂荡板能有效抑制基础的垂荡RAO,但垂荡板形状对基础的水动力性能无明显影响;具有圆形垂荡板的半潜式基础在拖航过程中的运动性能略优于六边形垂荡板,在原设计基础上继续增大垂荡板尺寸对基础运动响应的抑制效果呈现先增大后减小的趋势,说明半潜式风机基础存在一个最优的垂荡板尺寸。  相似文献   

4.
通过物理模型试验研究海底子母管线分别在规则波加流和不规则波加流作用下的水动力特性。基于Morison方程,采用"等效直径法"分析得到子母管线拖曳力系数CD,惯性力系数CM和升力系数CL(CD+,CL-)。试验分别考察了流速比Uc/Uw,母管与海床间隙比e/D及子母管间的相对缝隙G/D对海底子母管线水动力系数的影响。结果表明水动力系数随Uc/Uw的增大而减小;当e/D<0.5时,海床对子母管线受力的影响比较明显,CD,CMCL+均随e/D增大而减小,|CL-|随e/D增大而增大;对子母管间的相互影响也不可忽略,CD,CM和|CL-|均随G/D增大而减小,CL+值随G/D增大而增大。  相似文献   

5.
通过物理模型试验研究海底子母管线分别在规则波加流和不规则波加流作用下的水动力特性。基于Morison方程,采用"等效直径法"分析得到子母管线拖曳力系数CD,惯性力系数CM和升力系数CL(CD+,CL-)。试验分别考察了流速比Uc/Uw,母管与海床间隙比e/D及子母管间的相对缝隙G/D对海底子母管线水动力系数的影响。结果表明水动力系数随Uc/Uw的增大而减小;当e/D<0.5时,海床对子母管线受力的影响比较明显,CD,CMCL+均随e/D增大而减小,|CL-|随e/D增大而增大;对子母管间的相互影响也不可忽略,CD,CM和|CL-|均随G/D增大而减小,CL+值随G/D增大而增大。  相似文献   

6.
The wave transmission characteristics and wave induced pressures on twin plate breakwater are investigated experimentally in regular and random waves.A total of twenty pressure transducers are fixed on four surfaces of twin plate to measure the wave induced dynamic pressures.The spatial distribution of dynamic wave pressure is given along the surface of the twin plate.The uplift wave force obtained by integrating the hydrodynamic pressure along the structure is presented.Discussed are the influence of different incident wave parameters including the relative plate width B /L,relative wave height /i H a and relative submergence depth s /a on the non-dimensional dynamic wave pressures and total wave forces.From the investigation,it is found that the optimum transmission coefficient,t K occurs around B /L 0.41 ~ 0.43,and the twin plate breakwater is more effective in different water depths.The maximum of pressure ratio decreases from 1.8 to 1.1 when the relative submergence depth of top plate is increased from 0.8to +0.8.  相似文献   

7.
Hydrodynamic behavior of a straight floating pipe under wave conditions   总被引:2,自引:0,他引:2  
This paper examines the hydrodynamic behavior of a floating straight pipe under wave conditions. The main problem in calculating the forces acting on a small-sized floating structure is obtaining the correct force coefficients Cn and Ct, which differ from a submerged structure. For a floating straight pipe of small size, we simplify it into a 2D problem, where the pipe is set symmetrically under wave conditions. The force equations were deduced under wave conditions and a specific method proposed to resolve the wave forces acting on a straight floating pipe. Results of the numerical method were compared to those from model tests and the effects of Cn and Ct on numerical results studied. Suggestions for the selection of correct Cn and Ct values in calculating wave forces on a straight floating pipe are given. The results are valuable for research into the hydrodynamic behavior of the gravity cage system.  相似文献   

8.
The skin friction of a two-dimensional planing flat plate is made up of two opposing components; a drag force from the flow aft of the stagnation line and an opposing thrust force from the jet flow. This paper is concerned only with the drag term and the wake velocity defect which it causes in the water behind the transom.It is concluded that the skin friction is less than would be expected from a flat plate at ambient static pressure (Dfo say) and is approximately equal to Dfo (1 − CR), where CR is the normal force coefficient based on wetted area. The wake velocity decrement due to this drag is found to be significant, particularly for surface piercing propellers.  相似文献   

9.
This study investigates the dynamic response of a Triangular Configuration Tension Leg Platform (TLP) under random sea wave loads. The random wave has been generated synthetically using the Monte-Carlo simulation with the Peirson–Moskowitz (P–M) spectrum. Diffraction effects and second-order wave forces have not been considered. The evaluation of hydrodynamic forces is carried out using the modified Morison equation with water particle kinematics evaluated using Airy's linear wave theory. Wave forces are taken to be acting in the surge degree-of-freedom. The effect of coupling of various structural degrees-of-freedom (surge, sway, heave, roll, pitch and yaw) on the dynamic response of the TLP under random wave loads is studied. Parametric studies for random waves with different Hs and Tz under the presence of current have also been carried out. For the orientation of the TLP, surge, heave and pitch degrees-of-freedom responses are influenced significantly. The surge power spectral density function (PSDF) indicates that the mean square response is affected by the amplification at the natural frequency of the surge degree-of-freedom and also at the peak frequency of the wave loading. The PSDF of the heave response shows higher peak values near the surge frequency and near the peak frequency of the wave loading. Surge response, therefore, influences heave response to the maximum. Variable submergence seems to be a major source of nonlinearity and significantly enhances the responses in surge, heave and pitch degrees-of-freedom. In the presence of current, the response behaviour of the TLP is altered significantly introducing a non-zero mean response in all degrees-of-freedom.  相似文献   

10.
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three non-dimensional parameters (Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients. The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.  相似文献   

11.
Both analytical (small time expansion) and numerical (finite-difference) approaches have been used to solve the earthquake-induced nonlinear hydrodynamic pressure acting on a rigid high rise offshore cylinder. For the high rise offshore cylinder, the most part of the flow field is independent of z and a three dimensional hydrodynamic analysis can be reduced to a two dimensional analysis. At onset, the dimensionless ground displacement ?2 = 0 for the two dimensional analysis, the normalized hydrodynamic pressures across cylinder face is a constant and is independent of the radius of the cylinder. The normalized horizontal force coefficient Cfx is independent of intensity of ground acceleration and is approximately linear and proportional to ?2 and its onset value is equal to π. For a linear analysis i.e. neglecting nonlinear convective acceleration, the normalized hydrodynamic pressure coefficient is also independent of the radius of cylinder. The analytical method was good for ground motion in a single direction, the results of simultaneous action of two components of ground acceleration can be obtained by the superposition of the results due to separate excitation. But the superposition method is only valid in the linear analysis. For highly nonlinear problem, the present finite difference approach is recommended.  相似文献   

12.
The purpose of this paper is to validate a new method that can be used by offshore platform designers to estimate the added mass and hydrodynamic damping coefficients of potential Tension Leg Platform hull configurations. These coefficients are critical to the determination of the platform response particularly to high frequency motions in heave caused by sum-frequency wave forcing i.e. “springing”. Previous research has developed the means by which offshore platform designers can extrapolate anticipated full-scale hydrodynamic coefficients based on the response of individual model scale component shapes. The work presented here further evaluates the component scaling laws for a single vertical cylinder and quantifies the effects due to hydrodynamic interaction. Hydrodynamic interaction effects are established through a direct comparison between the superposition of individual hull component coefficients and those evaluated directly from complete hull configuration models. The basis of this comparison is established by the experimental evaluation of the hydrodynamic coefficients for individual hull components as well as partial and complete platform models. The results indicate that hydrodynamic interaction effects between components are small in heave, and validate component scaling and superposition as an effective means for added mass and damping coefficient estimation of prototype platforms. It is found that the dependency of damping ratio with KC for a TLP is almost identical to that of a single column, thus offering a scaling methodology for prototype damping ratio values.  相似文献   

13.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

14.
Estimates of the drag coefficient over sand waves during calm weather in the southern North Sea have been obtained from measurements of the water slope and currents at different heights (z) above the sea-bed using the log profile and momentum balance methods. An observed phase difference between principal terms in the momentum balance equation is examined theoretically. Drag coefficient estimates are found to agree broadly with previous studies. Owing to bedform asymmetry, average drag coefficient values obtained atz=1 m (C100) are found to be 0·0021 and 0·0029 for flood and ebb tides, respectively. Systematic changes in bed roughness are not detected. Using a momentum balance approach, the average drag coefficient value (Cd) atz=10 m is found to be 0·0056. Changes in 10-min averageCdvalues over sand waves during the tidal cycle are found to be small with bedform asymmetry having no detectable effect. Correlation betweenCdandC100is found to be poor and separation of skin friction and form drag terms is not possible with existing measurements. The inclusion of form drag inC100values at the present site leads to over-estimation of the bed shear stress ({q) available to mobilize and transport sediment. Mobile sediment, detected through the use of tracers and a transmissometer, was not found to have any measurable effect on eitherCdorC100in calm weather conditions.  相似文献   

15.
In order to study the propulsion mechanism of the bionic flapping hydrofoil (BFH), a 2-DoF (heave and pitch) motion model is formulated. The hydrodynamic performance of BFH with a series of kinematical parameters is explored via numerical simulation based on FLUENT. The calculated result is compared with the experimental value of MIT and that by the panel method. Moreover, the effect of inlet velocity, the angle of attack, the heave amplitude, the pitch amplitude , the phase difference, the heave biased angle, the pitch biased angle and the oscillating frequency are investigated. The study is useful for guiding the design of bionic underwater vehicle based on flapping propulsion. It is indicated that the optimal parameters combination is v=0.5m/s, θ0=40°.θ0=30°,Ψ=90°,Фbias=0°,θbias=0°and f=0.5Hz .  相似文献   

16.
Spar平台垂荡板水动力特性强迫振动试验研究   总被引:1,自引:1,他引:0  
采用强迫振动试验的方法,对Spar平台不同振幅和不同振动频率下的附加质量系数和粘性阻尼系数进行了系统研究。分析研究了实心垂荡板和开孔垂荡板对Spar平台水动力特性的影响,并将Spar平台整体模型的试验结果与圆柱体和单独考虑垂荡板时的试验结果比较,结果表明垂荡板结构能有效提高Spar平台的附加质量系数和粘性阻尼系数,在KC=0.2~1.3时,开孔率为5%的开孔垂荡板Spar平台和实心垂荡板Spar平台相比,粘性阻尼有所提高但是附加质量减小。试验进一步研究了垂荡板间距对Spar平台水动力性能的影响,得到了水动力系数随垂荡板间距的变化情况,研究成果对实际工程中Spar平台的优化设计具有一定的指导意义。  相似文献   

17.
Liu  Ya-qiong  Ren  Nian-xin  Ou  Jin-ping 《中国海洋工程》2022,36(6):880-893

The present work reports a Hybrid Modular Floating Structure (HMFS) system with typical malfunction conditions. The effects of both fractured mooring lines and failed connectors on main hydrodynamic responses (mooring line tensions, module motions, connector loads and wave power production) of the HMFS system under typical sea conditions are comparatively investigated. The results indicate that the mooring tension distribution, certain module motions (surge, sway and yaw) and connector loads (Mz) are significantly influenced by mooring line fractures. The adjacent mooring line of the fractured line on the upstream side suffers the largest tension among the remaining mooring lines, and the case with two fractured mooring lines in the same group on the upstream side is the most dangerous among all cases of two-line failures in view of mooring line tensions, module motions and connector loads. Therefore, one emergency strategy with appropriate relaxation of a proper mooring line has been proposed and proved effective to reduce the risk of more progressive mooring line fractures. In addition, connector failures substantially affect certain module motions (heave and pitch), certain connector loads (Fz and My) and wave power production. The present work can be helpful and instructive for studies on malfunction conditions of modular floating structure (MFS) systems.

  相似文献   

18.
朱仰顺  刘臻  曲恒良 《海洋工程》2022,40(4):147-157
全被动式振荡水翼是振荡水翼式潮流能装置的主要型式之一。对全被动式振荡水翼进行了数值模拟研究,构建了二维数值模型,研究了雷诺数及升沉刚度对全被动式振荡水翼水动力性能的影响。通过流场结构及水动力性能分析研究了典型参量对全被动式振荡水翼获能性能的影响机理,确定了维持其良好水动力性能的参数范围。研究发现,水翼的水动力性能对雷诺数及升沉刚度的变化较为敏感。雷诺数增大,水翼所需升沉刚度随之增加,且水翼可以在更大的参数范围下获得较优的水动力性能。另外,水翼可以在没有升沉刚度的情况下实现周期性运动,其获能甚至优于一些有升沉刚度的情况。最优工况下,平均功率系数和能量转换效率分别为1.07和27.48%。  相似文献   

19.
Waterfront retaining walls supporting dry backfill are subjected to hydrostatic pressure on upstream face and earth pressure on the downstream face. Under seismic conditions, if such a wall retains a submerged backfill, additional hydrodynamic pressures are generated. This paper pertains to a study in which the effect of earthquakes along with the hydrodynamic pressure including inertial forces on such a retaining wall is observed. The hydrodynamic pressure is calculated using Westergaard's approach, while the earth pressure is calculated using Mononobe-Okabe's pseudo-static analysis. It is observed that when the horizontal seismic acceleration coefficient is increased from 0 to 0.2, there is a 57% decrease in the factor of safety of the retaining wall in sliding mode. For investigating the effect of different parameters, a parametric study is also done. It is observed that if φ is increased from 30° to 35°, there is an increase in the factor of safety in the sliding mode by 20.4%. Similar observations were made for other parameters as well. Comparison of results obtained from the present approach with [Ebeling, R.M., Morrison Jr, E.E., 1992. The seismic design of waterfront retaining structures. US Army Technical Report ITL-92-11. Washington DC] reveal that the factor of safety for static condition (kh=0), calculated by both the approaches, is 1.60 while for an earthquake with kh=0.2, they differ by 22.5% due to the consideration of wall inertia in the present study.  相似文献   

20.
The air-ice drag coefficient under neutral stratification C DN was measured with the eddy correlation method in the southern Sea of Okhotsk. The disturbance of the wind field caused by the ship’s structure was evaluated by computational fluid dynamics (CFD), and two types of correction methods were applied to estimate the error span of C DN : one is based on the results of CFD, and the other is based on the parameterization of C DN over open water suggested by Taylor and Yelland (2001). The C DN × 103 values finally obtained ranged from 1.9 to 5.4 with a mean value of 2.7 by the CFD correction and from 1.5 to 5.0 with a mean value of 3.1 by the other method. This is somewhat larger than the value of 2.5 suggested by Shirasawa (1981), and in the same range as 2.2–4.0 over rough ice and 3.1–5.0 over very rough ice, values which were complied by Guest and Davidson (1991) for first year ice. Most of the ice conditions were characterized by broken floes with a diameter less than 100 m and raised rims, which made the surface rougher than flat, level ice. The relation between C DN and ice concentration was not clear, mainly because the contribution of the form drag caused at the freeboard was undetectable due to the great variation of ice surface condition. The roughness length z M was also evaluated using the model developed for snow covered ice in a previous study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号