首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine and Petroleum Geology》2012,29(10):1801-1805
Except for those occurring at seafloor, most of natural gas hydrate form in sediments and are subject to the influence of sediment. Among these factors, the particle size effect on hydrate saturation level in sediment have been studied with a series of silica sands with various sizes, and the results obtained clearly indicate that particle size does play an important role in affecting the saturation level of hydrate in sediments. The proton relaxation times of water confined in the same series of silica sands, which were determined with NMR measurement, show logarithmic relationship with particle size. By comprehensive consideration of the results of hydrate saturation and water proton relaxation times, the particle size effect observed is tentatively explained by the water availability for hydrate formation in sediments.  相似文献   

2.
A better understanding of wave attenuation in hydrate-bearing sediments is necessary for the improved geophysical quantification of marine gas hydrates. Here we compare the attenuation behavior of hydrate-saturated vs water-saturated sediments at site GC955H, in the Gulf of Mexico, which was surveyed during the JIP Leg II expedition. We compute the P-wave attenuation of the gas hydrate bearing sediments using the median frequency shift method on the monopole waveforms. The results show that P-wave attenuation due to low saturation (<?0.4) in hydrate-filled fractures of fine-grained sediment is comparable to that of the water-filled fracture case. On the contrary, P-wave attenuation due to high saturation (>?0.4) in the hydrate-filled pores of coarse-grained sediments can be up to as much as three times more than that of the water-saturated case. The correlation analysis shows that the P-wave attenuation increases with the increasing gas hydrate saturation for the highly saturated gas hydrate-bearing sand interval while the correlation of the P-wave attenuation and hydrate saturation is weak for low saturated gas hydrate-bearing shale interval. The results show that P-wave attenuation is more likely to be used as a geophysical proxy for gas hydrate quantification of highly concentrated coarse-grained sediment rather than for that of fine-grained sediment. To examine the P-wave behavior in sand, we use the improved LCAM model, which accounts for physical factors such as grain boundary roughness and squirt flow to explain the observed differences in P-wave attenuation between hydrate and water-saturated coarse-grained sediment. Our results provide further geophysical evidences for P-wave behavior in the gas hydrate-bearing sediments in the field.  相似文献   

3.
沉积物孔隙毛细管压力与甲烷水合物饱和度关系研究   总被引:1,自引:1,他引:0  
To better understand the relationship between the pore capillary pressure and hydrate saturation in sediments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capillary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.  相似文献   

4.
Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2CH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.  相似文献   

5.
6.
Presence of gas hydrate and free gas in Iranian part of Makran accretionary prism changes the elastic properties of unconsolidated sediments and produces sharp bottom simulating reflectors (BSRs) which are observed on the 2-D seismic data. Different methods have been applied to estimate the gas hydrate and free gas saturations in marine sediments based on seismic measurements. Most of these methods are based on relating the elastic properties to the hydrate and free gas saturations and remotely estimating their concentration. In this regard, using the effective medium theory (EMT) which was developed for different modes of hydrate distribution is more considered among other rock physics theories. The main concern about saturation estimations based on EMT is that the velocities of the hydrate-bearing sediments primarily depend on how they are distributed within the pore space. Therefore, understanding the modes of hydrate distribution (at least cementing or non-cementing modes) is necessary to decrease the estimation uncertainties.The first intention of paper is to investigate amplitude variation versus offset (AVO) analysis of BSR to determine the hydrate distribution modes. The results from the probable saturation revealed that if the hydrate cements the sediment grains, BSR would show the AVO class IV and if hydrate does not cement the sediment grains, then BSR would show either the AVO class II or class III depending on the free gas saturation just beneath the BSR. The second intention of paper is to introduce some templates called reflectivity templates (RTs) for quantitative study of hydrate resources. These templates are provided based on the EMT to quantify the hydrate and free gas near the BSR. Validation of this approach by synthetic data showed that a reliable quantification could be achieved by intercept-gradient RTs, only if these attributes are determined with a high accuracy and good assumptions are made about the mineralogical composition and porosity of the unconsolidated host sediments. The results of this approach applied to a 2-D marine pre-stack time migrated seismic line showed that less than 10% of the gas hydrate accumulated near to the BSR in anticlinal-ridge type structure of Iranian deep sea sediments. The free gas saturation near to the BSR by assuming a homogeneous distribution was less than 3% and by assuming patchy distribution was about 3–10%.  相似文献   

7.
The formation of sub-seafloor gas hydrates in marine environments can be described as a coupled transport and thermodynamic process inside a host sediment matrix undergoing structural evolution. The transport processes are driven by the sedimentary load and induced overpressure gradients, controlled by sediment permeability. In order to accurately model the resulting fluid flow profile, the decrease of sediment permeability during hydrate precipitation has to be taken into account, which affects both the transport of solutes and sediment compaction. In this paper, we investigate how total hydrate abundance is affected by regions of low permeability which deflect the flow field in their vicinity. For this purpose, a two-dimensional numerical hydrate system model was set up which permits to quantify this effect in scenarios where changes in water depth cause lateral variations of the thickness of the hydrate stability field, as well as of hydrate saturation and sediment permeability. The microscopic structure of gas hydrate crystals in the host sediment matrix defines the evolution of the permeability reduction during hydrate formation. Grain-coating precipitates have a stronger tendency to clog flow paths through pore throats than do pore-filling precipitates. Our results clearly show that these pore-scale processes affect the large-scale flow field and hydrate abundance. The sensitivity depends on the model geometry and, for a 5° slope of the seafloor, 4.1% relative difference is predicted for the hydrate saturation according to different porosity-permeability relationships.  相似文献   

8.
This study presents comprehensive geotechnical data of the natural marine sediments cored from the hydrate occurrence regions during the Ulleung Basin Gas Hydrate Expedition 1 (UBGH1), East Sea, offshore Korea in 2007. Geotechnical soil index properties of the Ulleung Basin sediments, including grain size distribution, porosity, water content, Atterberg limits, specific gravity, and specific surface area, were experimentally determined. These soil index properties were correlated to geotechnical engineering parameters (e.g., shear strength and friction angle) by using well-known empirical relationships. By performing standard consolidation tests on both undisturbed specimens (as recovered from the original core liner after hydrate dissociation) and remolded specimens, stress-dependent mechanical and hydraulic properties (e.g., compressibility and hydraulic conductivity) were measured. The experimental results provide important engineering parameters, and demonstrate the effect of hydrate presence and consequential dissociation to index properties, engineering parameters, and innate sediment structures.  相似文献   

9.
In order for methane to be economically produced from the seafloor, prediction and detection of massive hydrate deposits will be necessary. In many cases, hydrate samples recovered from seafloor sediments appear as veins or nodules, suggesting that there are strong geologic controls on where hydrate is likely to accumulate. Experiments have been conducted examining massive hydrate accumulation from methane gas bubbles within natural and synthetic sediments in a large volume pressure vessel through temperature and pressure data, as well as visual observations. Observations of hydrate growth suggest that accumulation of gas bubbles within void spaces and at sediment interfaces likely results in the formation of massive hydrate deposits. Methane hydrate was first observed as a thin film forming at the gas/water interface of methane bubbles trapped within sediment void spaces. As bubbles accumulated, massive hydrate growth occurred. These experiments suggest that in systems containing free methane gas, bubble pathways and accumulation points likely control the location and habit of massive hydrate deposits.  相似文献   

10.
薛峤娜  胡博  谭丽菊  王江涛 《海洋学报》2018,40(10):190-199
本文对采自渤海、黄海和东海3个典型海域的沉积物进行了尿素吸附/解吸的实验室模拟研究,用Freundlich吸附模型和Henry吸附模型分析了不同沉积物对尿素吸附的热力学特性,并研究了温度、沉积物粒径、有机质含量等因素对尿素在沉积物表面吸附的影响。结果表明,沉积物对尿素的吸附/解吸过程总体呈现3个阶段:快速吸附阶段(0~5 h)—慢速吸附阶段(5~12 h)—平衡阶段(12 h之后)。当水体中的尿素浓度较低时,沉积物解吸释放尿素,随着上覆水中尿素浓度逐渐增加,沉积物对上覆水中的尿素产生吸附行为,各海区沉积物对尿素的吸附能力由强至弱依次为渤海、东海、黄海,这可能与沉积物的类型有关。Freundlich方程和Henry方程均可模拟沉积物对尿素的吸附,温度、粒径以及沉积物中有机质含量等因素均对尿素在沉积物上的吸附产生影响,随着温度升高,尿素在沉积物上的吸附量变小,沉积物粒径越小,有机质含量越高,吸附尿素的能力越强,因此,揭示尿素在沉积物表面的环境行为时,必须考虑以上因素的影响。  相似文献   

11.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

12.
海洋沉积物含水率、密度和孔隙度等物理参数是沉积物声学特性研究中的重要指标。由于南海沉积物类型多样、成分复杂, 特别是深海沉积物样品珍贵, 需精确测定沉积物声学及物理参数并无损害地保持沉积物化学性质。文章以黏土、粉砂和砂三种典型海底沉积物为研究对象, 使用环刀法和烘干法, 在不同温度条件下(60℃、80℃、100℃和120℃)测定和分析了这三种沉积物的含水率、密度、孔隙度随烘干时间的变化趋势及特征, 并进行了回归分析和综合研究。结果表明: 1) 对同类型沉积物, 温度越高, 完全失去孔隙水的时间越短, 且失水过程具有阶段性;2) 同一温度下, 三种典型沉积物完全失去孔隙水的时间为t<t粉砂<t黏土, 且不同时间段, 失去孔隙水的速率差异较大, 这主要与沉积物的颗粒大小、颗粒间的间隙大小以及烘干后期沉积物中所含的水分均已大部分流失有关;3) 建议声学沉积物样品的烘干温度以80℃左右为宜, 并给出三种沉积物完全烘干的参考时长和临界时间;4) 在温度为80℃时, 将临界时间处的物理参数带入经验方程进行声速预报是可行的。  相似文献   

13.
The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1 m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (∼100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores.  相似文献   

14.
Gas hydrate has been recognized as a potential energy resource in South China Sea (SCS). Understanding the acoustic response of gas hydrate formation in the SCS sediments is essential for regional gas hydrate investigation and quantification. The sediments were obtained from gravity core sampling at E 115°12.52363′ N 19°48.40299′. Gas hydrate was formed within a “gas + water-saturated SCS sediments” system. Combination of a new bender element technique and coated time domain reflectometry (TDR) was carried out to study the acoustic response of hydrate occurrence in SCS sediments. The results show the acoustic signal becomes weak when hydrate saturation (Sh) is lower than 14%. The acoustic velocities (Vp, Vs) of the sediments increase with Sh during hydrate formation, and Vs increases relatively faster when Sh is higher than 14%. These results indicate that tiny hydrate particles may firstly float in the pore fluid, which causes a significant acoustic attenuation, but has little influence on shear modulus. As time lapses and Sh approaches 14%, numerous particles coalesce together and contact with sediment particles. As a result, Vs has a sharp increase when hydrate saturation exceeds 14%. Several velocity models were validated with the experimental data, which suggests a combination of the BGTL (Biot–Gassmann Theory modified by Lee) model and the Weighted Equation is suitable to estimate Sh in SCS.  相似文献   

15.
广西钦州湾海域表层沉积物分异特征与规律   总被引:1,自引:0,他引:1  
根据2008年12月广西钦州湾海域表层沉积物粒度分析结果,结合沉积物结构、地形和水动力条件,探讨了沉积物的分布规律及其作用机制。结果表明,钦州湾海域表层沉积物在横向上,自西向东呈现出西部粗、东部细,分选程度西部好于东部的特征;在纵向上,沉积物粒径呈现由内向外粒径从粗到细的特征,大致在5m水深处存在一个明显的界限,该水深以浅区域的砂含量较高,且主要沉积砂等较粗物质;该水深以深区域以粉砂质黏土为主,砂含量较低。Flemming的三角图式表明,钦州湾海域沉积动力相对较弱。在此基础上,根据水动力差异与物源不同,将研究区划分为5m水深以浅的西部区、5m水深以浅的东部区和5m水深以深的区域等3个沉积区。  相似文献   

16.
大河河口的动力沉积过程一直是陆海相互作用研究的核心内容,其中水体泥沙的垂向交换是河口动力-沉积机制分析中的关键环节。基于2011年12月对长江河口及其邻近海湾采集的大范围、高密度的近底层悬沙、海床表层1~2cm(表层沉积物)和垂向向下约2~10cm的沉积物(次表层沉积物)同步3组303个样品,利用经验正交函数方法,对河口地区的悬沙和沉积物交换过程进行研究。结果表明:近底层水体悬沙的空间分布模式主要以粉砂粒级为主,空间分布差异性不大;表层及次表层沉积物的空间分布模式相似,但较近底层水体悬沙的分布复杂,存在明显的区域性特征,其中南汇边滩水域中部辐散区的沉积物表现为粗粉砂-细砂模式,其他区域由粉砂组分模式组成。近底层水体悬沙、表层和次表层沉积物的第一模态主要反映了粒径较细的泥沙运动,第二模态主要反映了粒径较粗的泥沙运动。在近底层水体悬沙与表层沉积物的垂向交换中,主要交换粒级为粉砂组分粒级。在表层沉积物与次表层沉积物的垂向交换中,南汇边滩中部辐散区的主要交换粒级为粗粉砂-细砂组分粒级,其他区域主要为粉砂组分粒级。  相似文献   

17.
近年来, 随着海砂资源需求激增和勘查开发快速发展, 解决海砂调查研究领域中海砂命名混乱的问题迫在眉睫。本文在总结多年海砂调查经验和前人研究成果的基础上, 分析对比已有粒级划分标准和沉积物命名方法的特点, 提出一套适用于海砂的粒级划分标准和命名方法。基于伍登-温特沃斯(Udden-Wentworth)等比制φ值粒级标准, 提出将海砂沉积物粒级划分为砾(>2mm)、砂(2~0.063mm)和泥(<0.063mm)3大类, 二级细分为9小类; 基于优势粒级法思想, 将砾、砂和泥作为三个分类端元, 提出“砾-砂-泥三角图解+砂、砾质沉积物细分命名”的海砂沉积物分类方案, 体现了“对砂、砾质沉积物细化其名, 对泥质沉积物简化其名”的思想。该命名方法直观地反映了海砂的粒级组成和含量, 同时较好地兼顾了海砂命名的沉积学涵义和实际应用需求。  相似文献   

18.
于2013年11月、2014年1月及3月在青岛市灵山湾海水浴场进行了3次表层沉积物采样,对粒度组分和粒度参数平面分布的变化进行了分析。结果表明,本区沉积物整体有变粗的趋势,细砂组分特别是极细砂和粉砂组分含量下降明显,分选性变好,正偏态及高峰度分布区扩大,粒度参数高值分布区被消除。粒径趋势分析表明,在涨潮流与强盛的冬季风驱动的风浪、沿岸流的综合作用下,研究区沉积物总体呈北东-南西向沿岸输运,运移趋势变化受到波浪、潮流水动力条件与地形相互作用的影响。短期的波能变化足以改变沙滩地貌,从而影响表层沉积物的分布。可为浴场维护提供理论依据。  相似文献   

19.
以2011年6月和8月在长江口邻近海域采集的沉积物和间隙水样品为研究对象,讨论了沉积物中生物硅(BSi)和间隙水中溶解硅(DSi)的分布情况和影响因素,并初步探讨了生物硅的循环和保存。结果表明,表层沉积物中BSi的含量较低,且均小于1%。柱状沉积物中BSi的含量范围为0.34%~0.52%。C3、D1站位柱状沉积物中BSi的记录主要是由早期成岩过程控制,33#站位的分布特征主要是由水动力等变化控制。沉积物间隙水中DSi的浓度范围为101.6~263.9 μmol/L,低于纯BSi的溶解度;间隙水的pH值越大,沉积物的含水率越低,还原性越强,间隙水中DSi的含量越高。3站位生物硅的埋藏效率均较高,表明长江口邻近海域是潜在的硅的汇。沉积通量的分布与沉积速率和埋藏效率的分布一致,均有近岸高于远海的趋势。  相似文献   

20.
苏北废黄河三角洲沉积物的时空变化特征   总被引:1,自引:0,他引:1  
基于苏北废黄河三角洲近岸冬夏两季的表层沉积物粒度参数分析结果,研究了沉积物的时空变化特征。结果表明,沉积物分布具有显著的时空变化特征:空间上由岸向海、由北侧至南侧,沉积物粒度呈变粗的趋势;时间上,沉积物粒径冬季粗于夏季。沉积物分选普遍较差,偏态为正偏,峰态尖锐。受季节性风的影响,冬季沉积动力环境比夏季复杂,沉积物粒度参数变化幅度较夏季大,冬季样品粒度参数等值线梯度明显大于夏季。在粒级-标准偏差曲线上,高峰值在52.55~88.39μm,为敏感粒级。研究区在潮流和季风驱动的风浪作用下,沉积环境具有波-流联合作用复杂的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号