首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为改善传统滑行艇在波浪环境中耐波性问题,提出了一种兼具快速性与耐波性的变结构滑行艇, 通过收放两侧片体实现滑单体形态与三体形态之间自由转换。为分析片体在斜浪航行中的减摇效果,采用数值方法对滑行艇 2 种形态在斜浪航行中的耐波性进行对比分析,结果表明:片体能够起到减横横摇作用,且其减横摇效果在单体形态的共振区域内最明显,在 βw=60°时,片体最多能减少 70.45%的横摇幅值。  相似文献   

2.
为研究航行体对十字形降落伞流场和阻力性能的影响,基于 Realizable k–ε 模型采用 PISO 算法开展了十字形降落伞–航行体系统的非定常绕流数值计算,得到了详细的流场计算结果。研究了不同拖曳比下十字形降落伞–航行体系统的流场分布规律与降落伞衣及航行体的气动特性变化,结果表明:当拖曳比 λ≤2 时, 航行体和降落伞衣形成闭式流动,降落伞衣阻力损失严重;当拖曳比 λ>2 时,航行体尾流区的压力恢复,降落伞衣底部形成稳定的正压区,流动形式由闭式转化为开式,拖曳比 λ 最大时的压差 Δp 相较拖曳比最小时的压差增加 12%,降落伞衣阻力恢复,阻力波动减小;当拖曳比 λ=4 时,降落伞与航行体的阻力分别增加 1.8%、 25%。结果显示十字形降落伞–航行体系统的流场和压力分布更为对称,且气动特性处于最佳状态。  相似文献   

3.
穿梭艇艏部特征分析及优化   总被引:1,自引:0,他引:1  
以一艘用于沿海巡逻的高速穿梭艇为研究对象,利用SHIPFLOW中的势流方法,基于Dawson方法的面元法,计算穿梭艇的兴波及流场问题。分别比较不同的半进流角对船舶整体的兴波阻力和最大波高的影响,得到最佳半进流角方案,并在此基础上,进一步分析比较倾斜船艏柱角度对船舶的兴波阻力和流场的影响。通过分析,得到穿梭艇艏柱倾斜角度的影响机理,为艏部进一步的优化提供参照,得出针对此种船型的最佳艏部方案。  相似文献   

4.
水下滑翔机(Autonomous Underwater Glider,AUG)是一种浮力驱动的自主水下航行器 (Autonomous Underwater Vehicle,AUV),通过调整滑动质量块来改变重心与浮心的相对位置,从而控制自身的运动姿态。完成了水下滑翔机的外形设计,同时,对其各系统组成部分进行了初步设计与布局。利用 MATLAB 软件基于计算得到的流体动力参数对滑翔机进行运动特性分析,得出定常运动状态下攻角、俯仰角和水平速度等参量随重心水平位移和净浮质量之间的关系。最后使用 Simulink 软件对垂直面内滑翔机的运动模型进行弹道仿真,验证了水下滑翔机总体设计方法的有效性和可行性。  相似文献   

5.
水下拖曳航行器是被广泛应用的水下监测平台。为掌握水下拖曳航行器的水动力及其拖揽姿态,文章通过CFD仿真分析计算其零攻角下的阻力系数,并通过多刚体-球铰模型建立其运动数学模型,分析不同航速下拖曳系统的总拉力、拖缆长度和航行器位置等的参数变化。研究结果表明:随着船舶航速的变化,拖曳系统各项参数变化的差别很大;在200 m深度时,6 kn航速相比4 kn航速的总拉力增加73%,而所需的拖缆长度仅增加1%。该数学模型可对不同航速下的水下拖曳系统的总拉力和拖缆姿态等做出预测,为拖曳系统设计提供技术支撑。  相似文献   

6.
高速水下航行体头肩部和表面突起等位置很容易产生空泡,不失一般性,将表面突起结构简化为一定高度的台阶。针对简化的航行体模型,基于数值模拟方法研究了头肩部空泡与台阶处空泡、头肩部空泡与尾空泡 2 种类型的双空泡相互作用问题。不同的来流攻角下,头肩部空泡与台阶处空泡的作用过程存在区别,可以分为大攻角和小攻角 2 种类型。当尾空泡内有不可凝结气体时,头肩部空泡与尾空泡的连通过程会伴随泡内压力的迅速变化。  相似文献   

7.
锥形振荡浮子在波浪能转换装置中应用非常广泛,在其服役期间,由于较小的设计吃水深度或为防避极端海况的需要,它们经常会离开水面;当其再次入水的时候,浮子底部就会受到入水冲击。入水冲击总是伴随着巨大的冲击压强以及冲击载荷,会导致浮子的结构性及疲劳性破坏,从而影响浮子的工作寿命。基于Fluent软件对锥形浮子的入水冲击过程进行了模拟仿真,研究了具有不同斜升角的锥体在入水冲击过程中所受的冲击压强、冲击载荷、冲击速度的时空变化规律,以及各冲击参数之间的关系。结果发现:(1)锥形浮子在入水瞬间的毫秒量级时间内受到极大的冲击压强和冲击载荷;(2)最大压强出现在锥顶点处,且锥顶点压强和锥表面压强之间的差距随着入水深度的增加而逐渐减小;(3)锥顶点压强峰值早于冲击载荷峰值而出现,并且两者之间的时间间隔随着锥体斜升角的增加而增大;(4)其他条件不变时,斜升角越小的锥体其所受的入水冲击越大。  相似文献   

8.
利用 Lagrange 结构网格和 Euler 流场网格(L/E)耦合的建模方法,建立了尖头回转体和前伸空化回转体高速自旋 45°角斜 400 m/s 速度入水仿真模型。通过对比 2 种回转体入水后质心弹道轨迹和攻角变化可以发现,高速自旋的尖头回转体入水后弹道发散明显,且发生姿态失稳;前伸空化回转体可以有效减少入水后的弹道发散,入水 4 m 后仍能保持较好的斜射姿态。研究结果表明:对于高速自旋入水工况,前伸空化回转体具有较高的入水弹道稳定性。  相似文献   

9.
潜艇指挥台围壳对阻力和伴流场影响数值研究   总被引:2,自引:0,他引:2  
采用Reynolds平均Navier-Stokes(RANS)方法计算潜艇三维粘性流场,分析潜艇指挥台围壳对潜艇水动力性能的影响.采用全附体SUBOFF模型验证了CFD方法,通过将螺旋桨盘面处的实效伴流场、艇体表面压力分布以及模型总阻力的模拟结果与Taylor船池的实验结果进行对比.比较结果显示CFD计算结果与实验数据具有很好的一致性,表明CFD方法可以用于潜艇指挥台围壳设计的水动力计算.通过数值计算研究指挥台围壳的高度和在艇上的分布位置对其后方的流场、螺旋桨盘面处的伴流场和阻力的影响.  相似文献   

10.
自升式作业平台是勘探开采海洋油气资源的重要装备。在其使用期内,需要多次移动位置。移动之前,自升式平台通过桩腿拔出桩靴。拔桩过程可能因地质条件复杂而费时费力。喷冲系统对降低拔桩阻力的功效明显。通过单喷嘴试验,本文研究不同地质条件下的喷冲参数变化规律,并探讨参数之间的相互影响。通过桩靴模型喷冲试验,验证喷冲系统降低拔桩阻力的有效性。试验结果将为进一步设计能够有效降低自升式平台拔桩阻力的喷冲系统提供技术支持。  相似文献   

11.
Running attitudes of semi-displacement vessels are significantly changed at high speed and thus have an effect on resistance performance and stability of the vessel. There have been many theoretical approaches about the prediction of running attitudes of high-speed vessels in calm water. Most of them proposed theoretical formulations for the prismatic hard-chine planing hull. In this paper, running attitudes of a semi-displacement round bilge vessel are theoretically predicted and verified by high-speed model tests. Previous calculation methods for hard-chine planing vessels are extended to be applied to semi-displacement round bilge vessels. Force and moment components acting on the vessel are estimated in the present iteration program. Hydrodynamic forces are calculated by ‘added mass planing theory’, and near-transom correction function is modified to be suitable to a semi-displacement vessel. Next, ‘plate pressure distribution method’ is proposed as a new hydrodynamic force calculation method. Theoretical pressure model of the 2-dimensional flat plate is distributed on the instantaneous waterplane corresponding to the attitude of the vessel, and hydrodynamic force and moment are estimated by integration of those pressures. Calculations by two methods show good agreements with experimental results.  相似文献   

12.
Earlier papers (Payne, 1981 a,b,c) have developed what might be called a virtual mass theory which in principle permits the forces on any planing hull form to be calculated. In the present paper, this methodology is extended to calculate the thickness and momentum of the jet or spray sheet thrown off by the planing surface. For a two-dimensional flat planing plate—the only case where comparison is possible—the theory gives essentially the same result as that of Pierson and Leshnover (1948). For a three-dimensional flat plate and prismatic hulls, the results seem physically reasonable.For the small trim angles associated with efficient planing, on a weightless inviscid fluid the total pressure drag of any hull can be reduced to close to zero by deflecting the jet rearwards and parallel to the undisturbed surface, the residual resistance being due to the cross-flow force which varies as (trim angle)2.  相似文献   

13.
A numerical algorithm based on the boundary element method (BEM) is presented for predicting the hydrodynamic characteristics of the various planing hull forms. The boundary integral equation is derived using Green's theorem on the wetted body surface and the free surface. The ventilation function at the transom is estimated with Doctor's empirical formula. This function is defined as the transom zone free surface boundary condition. The combined boundary integral equation and modified free surface boundary condition are simultaneously solved to determine the dipole on the wetted hull surface and the source on the free surface. The method is applied to investigate three examples of planing hulls, which include flat-plates, as well as wedge-shaped and variable deadrise planing hulls. Their hydrodynamic characteristics are calculated for different speeds. Computational results are presented and compared with existing theories and experiments. On the whole, the agreement between the present method and the selected experimental and numerical data is satisfactory.  相似文献   

14.
Ship hull drag reduction using bottom air injection   总被引:1,自引:0,他引:1  
The idea of bottom air injection to reduce ship hull resistance is not new. Early patents envisioned planing hull applications. Recent planing hull tests speed realized an increase of 7–12 knots. River barges and ship fitted with an air injection system results are presented to show a 10–15% reduction in the frictional resistance. Graphs for making initial estimates for displacement hulls with bottom air injection are presented. It is clear from these results that improvements in high speed planing catamarans and full form hull resistance can be realized by using bottom air injection.  相似文献   

15.
VLCC油船波浪增阻预报方法的实用修正   总被引:1,自引:1,他引:0  
近年来随着船舶环保和营运性能要求更高,波浪增阻预报正变得越来越重要。由于存在假设和简化,势流理论方法的短波增阻预报精度差,而经验方法在不同船型中的适用性不强。以有航速VLCC船迎浪航行为例,考虑吃水和航速影响,对理论和半经验方法的波浪增阻结果进行验证和比较分析,并总结出适用特定船型的快速精确预报方法。理论方法基于水平线段移动脉动源的三维面元法求解速度势问题,进而采用三维船体辐射能量法得到船舶辐射增阻,基于二阶波浪力定常分量公式计算得到绕射增阻;经验方法采用ISO15016-2015推荐的STAWAVE2方法。通过分析辐射和绕射增阻占比,讨论了目前方法的适用范围,进而对半经验方法的修正系数进行了研究,给出了反映相似船型和航速特征的改进公式。  相似文献   

16.
A combined method for the hydrodynamic characteristics of planing crafts   总被引:1,自引:0,他引:1  
The prediction of the total resistance of planing crafts at high speeds is very important. In this paper, a combined method is investigated for determining the hydrodynamic characteristics of planing crafts in the calm water. The study consists of a potential-based boundary element method (BEM) for the induced pressure resistance, the boundary layer theory for the frictional resistance and practical method for the spray resistance. The planing surface is represented by a number of elements with constant velocity potential at each element. The unknown-induced pressure is obtained by using the free surface elevation condition and the Kutta condition at the transom stern. Hydrodynamic-induced resistance and lift are determined by the calculated dynamic pressure distributions. The boundary layer analysis method is based on calculations of the momentum integral equation applied to obtain the frictional resistance. A particular practical approach is introduced to present the region of the upwash geometry for the spray. A numerical program has been developed for the present research and applied to the hull form of the craft. Four different hull forms of Series 62 model 4666 planing craft are presented. It is shown that the present combined method is efficient and the results are in good agreement with the experimental measurements over a wide range of volumetric Froude numbers.  相似文献   

17.
《Ocean Engineering》2004,31(3-4):253-267
Artificial air cavity ship concept has received some interest due to its potential on viscous resistance reduction for high speed craft. Although a small number of ships were designed and built by using this concept, further research on resistance components is required to improve the understanding of artificial air cavity forms. A method based on tank testing with wave pattern measurements to identify resistance components was adopted in the current work. Resistance tests were conducted with two forms; first of which was conventional prismatic planing hull form with a deadrise angle of 10°, and second one was an alternative form with an artificially cavity which was tested both without any air injection, and with two different air injection rates.Total resistance, running trim, sinkage, supply airflow to artificial cavity, air pressure in the cavity and wave pattern generated by the hulls were measured. Frictional resistance was calculated from wetted surface area and compared with resistance component obtained by subtracting wave pattern resistance from the total resistance. Wave pattern spectrums with air cavity configurations were compared across the speed range.  相似文献   

18.
In conjunction with high performance computers, recent developments in computational science paved the path to more accurate representation of body motions inside fluids. Small motions inside the flow can be computationally approximated by using rigid body motion but it is incapable of accurately predicting the large motions of a planing vessel. The implementation of overset grid has made it possible to better approximate the complex fluid-structure interaction problem of the planing regime. The focus of this study was to evaluate the opportunity of using an overset grid system to numerically solve the flow around a planing hull and to understand the planing regime with this invaluable tool. It was shown in this study that the overset grid better captures the large motions of the planing hull at high Froude numbers. Then, the results obtained by overset grid were used to calculate the resistance components of a planing hull in a wide Froude number range. The resistance components were discussed with respect to values generated by Savitsky approach. Using the benefits that the computational science brings, the flow was visualized to explain some underlying physics relevant to the planing regime.  相似文献   

19.
Stability of the marine vessels in different conditions is one of the most important problems in the design of a planing vessel. In this research, the effects of some important design parameters (mass, longitudinal center of mass, deadrise angle, and length) of DTMB 62 model 4667-1 planing hull on the drag and also on the longitudinal dynamic stability (porpoising) are investigated in the velocity range of 2.12–8.486 m/s in calm water. In this paper, both numerical simulation of Reynolds Average Naiver Stokes (RANS) equations and semi-empirical formulas of Savitsky are used to analyze the motion of a 4667 planing vessel in calm water with two degrees of freedom (2DOF). For this purpose a finite volume, ANSYS-FLUENT, code is used to solve the Navier-Stokes equations for the simulation of the flow field around the vessel. In addition, an explicit VOF scheme and SST- Kω model is used with dynamic mesh scheme to capture the interface of a two-phase flow and to model the turbulence respectively, in 2DOF model (heave and pitch). Also, the results of both methods are compared with each other. According to the present results, changing the aspect ratio of the vessel and also the longitudinal center of gravity have the most effect on the porpoising region.  相似文献   

20.
Wu  Qi-ming  Zhang  Bao-ji 《中国海洋工程》2022,36(3):488-499

To improve the energy efficiency of ships and to predict ship motion response under actual sea conditions, the far-field theory, strip theory, and Fujii and Takahashi’s modified semi-empirical method are based and studied to calculate the wave-induced added resistance. Firstly, a new modified formula based on the Maruo method is presented to calculate the radiation added resistance for the ship with a complex surface. Meanwhile, some calculation details such as the Green function, the shape of the sections (shape below the still water level or shape below the wave level) in the strip theory, and so on are discussed. Finally, the CFD method is used to simulate the motions of the hull and the added resistance, and the results of the CFD method and those of other numerical methods are analyzed and compared with the experiment results. The modified method in the paper can predict the added resistance in waves for the complex-hull-surface ships well and quickly.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号