首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work addresses the experimental and numerical study of a stepped planing hull and the related fluid dynamics phenomena typically occurring in the stepped hull in the unwetted aft body area behind the step. In the last few years, the interest in high-speed planing crafts, with low weight-to-power ratios, has been increasing significantly, and, in such context, naval architects have been orienting toward the stepped hull solution. Stepped planing hulls ensure good dynamic stability and seakeeping qualities at high speeds. This is mainly due to the reduction of the wetted area, which is caused by the flow separation occurring at the step. This paper presents the experimental results of towing tank tests in calm water on a single-step hull model, which is the first model of a new systematic series. The same flow conditions are analyzed via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES), with different moving mesh techniques (overset/chimera and morphing grid), performed at different model speeds. The numerical results are in accordance with experimental data, and overset/chimera grid is found to be the best approach between the analyzed ones. The flow patterns obtained numerically through LES on a refined grid appear similar to the ones observed in towing tank investigations through photographic acquisitions. These flow patterns are dominated by a rather complex 3D arrangement of vortices originating from air spillage at both sides of the step. The understanding of these phenomena is important for the effectiveness of stepped hull designs.  相似文献   

2.
A numerical investigation of the bottom pressure and wave elevation generated by a planing hull in finite-depth water is presented. While the existing literature addresses the free-surface deformation and pressure field at the seafloor independently, this work proposes a direct comparison between the two hydrodynamic quantities. The dependence of the pressure disturbances at the ocean floor from the waves generated at the free-surface by a planing hull is studied for several values of both the depth and hull Froude numbers. The methodology employed is Smoothed Particle Hydrodynamics (SPH), a numerical technique based on the discretization of the continuum fields of hydrodynamics through mesh-less particles. The SPH code herein chosen is initially validated against experimental data for transom-stern flow. Subsequently, numerical simulations are presented for a planing hull in high-speed regimes. The results show a direct correlation between surface wave dynamics and hydrodynamic pressure disturbances at the seafloor as the value of the Froude number is varied. This is assessed by studying the inverse dependence of the low-pressure wake angle with the Froude number and by comparison of SPH results with similar works in the cited literature.  相似文献   

3.
A combined method for the hydrodynamic characteristics of planing crafts   总被引:1,自引:0,他引:1  
The prediction of the total resistance of planing crafts at high speeds is very important. In this paper, a combined method is investigated for determining the hydrodynamic characteristics of planing crafts in the calm water. The study consists of a potential-based boundary element method (BEM) for the induced pressure resistance, the boundary layer theory for the frictional resistance and practical method for the spray resistance. The planing surface is represented by a number of elements with constant velocity potential at each element. The unknown-induced pressure is obtained by using the free surface elevation condition and the Kutta condition at the transom stern. Hydrodynamic-induced resistance and lift are determined by the calculated dynamic pressure distributions. The boundary layer analysis method is based on calculations of the momentum integral equation applied to obtain the frictional resistance. A particular practical approach is introduced to present the region of the upwash geometry for the spray. A numerical program has been developed for the present research and applied to the hull form of the craft. Four different hull forms of Series 62 model 4666 planing craft are presented. It is shown that the present combined method is efficient and the results are in good agreement with the experimental measurements over a wide range of volumetric Froude numbers.  相似文献   

4.
The planing trimaran possesses distinctive hybrid hydrodynamic and aerodynamic performance due to the presence of tunnel. The research described in this paper was carried out based on the observation of wave characteristics of a planing trimaran model in towing tests, in which the resistance drops as soon as the wave surface separates from tunnel roof. In order to gain a deeper insight into the relationship between wave flow and forces in tunnel region, a comprehensive series of viscous CFD simulations considering free-surface and 2-DOF motion of the hull (heave and pitch) have been performed for the tested model at the volume based Froude numbers ranging from 3.16 to 5.87. The calculated results were validated by comparison with experimental data and showed good agreement. Numerical results of wave contours, longitudinal wave cuts and lifting force distributions at the calculated speeds were presented for the analysis of ventilation process in tunnel region and the corresponding variation of tunnel forces. It is found that, for the speeds higher than Froude number of 4.52, the aerodynamic forces provide major tunnel lift and mainly act on the straight section of the tunnel. And, therefore, numerical simulations of two modified models have also been performed for the analysis of influence of straight section length on the hydrodynamic and aerodynamic performance of planing trimaran.  相似文献   

5.
The normal force coefficient on a flat planing surface having arbitrary heave and pitch motion in two-dimensional flow is compared with the lift coefficient of a thin wing in an infinite fluid. Despite the totally different derivations, they are found to be identical (at large Froude numbers and low trim angles and allowing for the wing's interaction with twice as much fluid) at low reduced frequencies. For higher frequency motions, the wing's angle of attack induced lift and its pitch and heave damping are less than those of a planing surface, but the acceleration terms remain identical. The differences at the higher reduced frequencies are due to the fact that, in invisad irrotational flow, the planning plate cannot leave a vortex wake, whereas a wing does.It seems to follow that the “virtual mass” planing hull analysis can be applied to “quasi-static” problems involving wings and bodies in an infinite fluid without the slenderness restriction originally imposed by Jones (1946). Certainly, it is remarkable that the so called “quasi-steady” forces on a two-dimensional wing can be obtained in a few lines of elementary analysis. On the other hand, the method fails entirely when used to compute the pitching moment on a two-dimensional plate, even though it has been found to give good results for the three-dimensional case (Payne, 1981c).This work is offered as a very incomplete study of an intriguing relationship between two very different bodies of analysis. Much more work will need to be done before the relationship between the two approaches will be fully understood.  相似文献   

6.
Ship hull drag reduction using bottom air injection   总被引:1,自引:0,他引:1  
The idea of bottom air injection to reduce ship hull resistance is not new. Early patents envisioned planing hull applications. Recent planing hull tests speed realized an increase of 7–12 knots. River barges and ship fitted with an air injection system results are presented to show a 10–15% reduction in the frictional resistance. Graphs for making initial estimates for displacement hulls with bottom air injection are presented. It is clear from these results that improvements in high speed planing catamarans and full form hull resistance can be realized by using bottom air injection.  相似文献   

7.
Surface effect ship (SES) air cushion and seal models are implemented in an URANS hydrodynamics solver. The air cushion is modeled either as a prescribed pressure patch, or as a compressible isothermal/adiabatic ideal stagnant air with fan and leakage flows. The seals are either discretized as hinged bodies or modeled as 2D planing surfaces with hydrodynamic interaction. Verification and validation studies are performed using T-Craft experimental data for calm water resistance, sinkage and trim at Froude number (Fr) = 0.1–0.6; impulsive heave and pitch decay at Fr = 0; and wave-induced resistance and motion predictions in head waves at Fr = 0 and 0.6. The compressible air cushion model with fan and leakage flows perform better than those without the fan and leakage flows and the prescribed pressure patch model. The hinged seal model performs better than the 2D planing surface model, but is computationally expensive for time accurate simulations. Therefore, the 2D planing surface model is used for the validation studies. SES simulations on grids with 5.3 M cells show grid verification intervals of 6%, which are comparable to those reported for displacement and semi-planing hull studies on similar grid sizes. On an average calm water and impulsive motion predictions compare within 8.5% of the experimental data, and wave-induced motion predictions show somewhat larger error of 13.5%. The errors levels are mostly comparable to those for displacement and semi-planing and planing hulls. The study identifies that most critical advancement needed for SES simulations is the seal modeling including fluid structure interaction.  相似文献   

8.
Recent developments in slender planing theory permit rather precise estimates of forces and moments to be made. So using a methodology first suggested by Epshtein for flat plate wakes, the modern theory is employed to find the longitudinal shape of a flat plate's wake. The result is in better agreement with experiment than previous formulations. The same approach is then applied (for the first time) to a prismatic wake, and the agreement with experiment is found to be excellent. Finally, the equations developed are used to deduce the wave energy developed by the passage of the hull, and from this, its wave drag. Although there are no experimental data available for comparison, the ratio (wave drag)/(total pressure drag) follows the same trend with Froude number as earlier two-dimensional solutions by Sedov and Squire, and tends to zero as Froude number tends to infinity.  相似文献   

9.
This paper analyzes the hydrodynamic performance of a planing craft with a fixed hydrofoil in regular waves. Numerical simulations are carried out based on a RANS-VOF solver to study the hydrodynamic performance of the planing craft and the influence of the fixed hydrofoil on its seakeeping. To validate the numerical method, a series of hydrodynamic experiments of a bare planing craft without the hydrofoil were carried out, from which the seakeeping performance of the planing craft was recorded, the numerical method based on overset grid was compared with the experiment and verified reliable. Eight hydrofoil design cases were then studied, whereby, their seakeeping performance in regular wave conditions were predicted through the numerical method which has been verified reliable and compared with each other. Effects of hydrofoil parameters, such as angle of attack and installation height, on the seakeeping performance were investigated. Finally, the suitable installation parameters which can optimize the performance of hydrofoil and reduce the negative influence are verified. The influence of the speed on the effect of the hydrofoil and the flow field around the planing craft are also investigated.  相似文献   

10.
朱云翔 《海洋工程》2021,39(1):162-170
高速滑行艇处于滑行状态时的阻力性能一直是滑行艇水动力性能研究的重点和难点。首先采用半经验半理论的Savitsky法对棱柱形滑行艇的航行姿态与阻力进行研究分析,计算纵倾结果与试验结果吻合良好。然后改变滑行艇的长宽比、重心纵向位置与底部斜升角参数,进一步研究三种参数变化对滑行艇航行姿态与阻力性能的影响。研究结果表明:基于半经验半理论的Savitsky方法可用于棱柱形滑行艇的阻力性能分析;在高速阶段,长宽比、重心纵向位置与底部斜升角参数对阻力影响较大。  相似文献   

11.
Numerical simulations have been carried out to determine the incompressible free surface flow around a VLCC hull form for which experimental results are available. A commercial viscous flow finite volume code using the two-phase Eulerian–Eulerian fluid approach and a potential flow code based on the Rankine source method have been used in this study. The simulation conditions are the ones for which experimental results exist. The shear stress transport (SST) turbulence model has been used in the viscous flow code. A tetrahedral unstructured grid was used with the viscous flow code for meshing the computational domain, while quadrilateral structural patches were used with the potential flow code for meshing the VLCC hull surface and the water surface around it. The results compare well with the available experimental data and they allow an understanding of the differences that can be expected from viscous and potential flow methods as a result of their different mathematical formulations, which make their complementary application useful for determining the total ship resistance.  相似文献   

12.
浮筒被广泛应用在海洋工程中,研究浮筒的涡激运动对于减少其对海洋平台构件的疲劳损坏具有指导意义。传统的动网格方法在处理浮筒转动运动时会因网格变形过大导致计算不收敛,采用了重叠网格方法以解决这一问题。数值试验采用了基于开源工具包Open FOAM自主开发的naoe-FOAM-SJTU求解器。分别进行了自由衰减数值试验和涡激运动数值试验。研究表明,随着折合速度的增加,浮筒的顺流向、横流向、垂荡和艏摇运动频率增加,且顺流向与垂荡频率相近,横流向与艏摇频率相近;其次,根据涡量场分布,表明浮筒前一时刻的泻涡会影响到浮筒之后时刻的周向涡量分布;最后,研究发现自由端对于浮筒尾流场泻涡有着显著影响,为将来探究减少浮筒涡激运动的方法提供指导。  相似文献   

13.
High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong coupling between rigid body motions and hydrodynamic analysis. In addition, free surface should be predicted with good accuracy for each time step. In this paper, velocity and pressure fields are coupled by use of the fractional step method. On the basis of integration of the two-phase viscous flow induced stresses over the hull, acting loads (forces and moments) are calculated. With the strategy of boundary-fitted body-attached mesh and calculation of 6-DoF motions in each time step, time history of ship motions including displacements, speeds and accelerations are evaluated. For the demonstration of the software capabilities, circular cylinder slamming is simulated as a simple type of water slamming. Then, a high-speed planing catamaran is investigated in the case of steady forward motion. All of the results are in good concordance with experimental data. The present method can be widely implemented in design as well as in performance prediction of high-speed vessels.  相似文献   

14.
基于推板造波理论和摇板造波理论,在Open FOAM平台上采用重叠网格技术建立黏性数值波浪水槽,并使用一种结合SIMPLE算法和PISO算法的PIMPLE算法对数值模型进行求解。利用开发的数值模型通过数值收敛性测试和网格独立性测试分别重点研究了时间步长、库朗数和网格尺寸对数值精度和计算效率的影响。并对比研究了此数值模型分别嵌入层流模型和湍流模型的计算精度和计算效率。实现的规则波和二阶有限振幅波与理论结果和试验结果吻合,验证了此黏性数值波浪水槽的造波和主动消波功能。基于二维数值波浪水槽,进一步研究了三维数值造波,数值计算结果与理论结果吻合良好。研究结果不仅验证了重叠网格在二维和三维两相流体域中求解运动物体与流场交互的可靠性和正确性,而且为使用此黏性数值波浪水槽解决更复杂的海洋工程问题提供了依据。  相似文献   

15.
One of the most important aspects, in the ACS and multi stepped hull design, is the choice of the geometrical shape of the cavity and the steps. In this article a complete experimental and numerical campaign on a multi stepped ACS has been carried out, varying the velocity and the air flow rate under the hull. The experimental tests have been conducted in an ITTC Towing Tank allowing to validate the numerical simulations obtained by means of a CFD U-RANSe (Unesteady Reynolds Averaged Navier-Stokes equations) code. The CFD setup is described in detail. From this campaign a critical analysis of the Froude number influence on the air cushion shape has been argued. The authors identified four different behaviours, from low to very high Froude numbers. The use of CFD has allowed to observe quantities of difficult evaluation by means of traditional experimental test, as e.g. the frictional component of the resistance, the airflow path lines and the volume of fraction in transversal and longitudinal sections. The results have been discussed.  相似文献   

16.
《Ocean Engineering》2004,31(3-4):253-267
Artificial air cavity ship concept has received some interest due to its potential on viscous resistance reduction for high speed craft. Although a small number of ships were designed and built by using this concept, further research on resistance components is required to improve the understanding of artificial air cavity forms. A method based on tank testing with wave pattern measurements to identify resistance components was adopted in the current work. Resistance tests were conducted with two forms; first of which was conventional prismatic planing hull form with a deadrise angle of 10°, and second one was an alternative form with an artificially cavity which was tested both without any air injection, and with two different air injection rates.Total resistance, running trim, sinkage, supply airflow to artificial cavity, air pressure in the cavity and wave pattern generated by the hulls were measured. Frictional resistance was calculated from wetted surface area and compared with resistance component obtained by subtracting wave pattern resistance from the total resistance. Wave pattern spectrums with air cavity configurations were compared across the speed range.  相似文献   

17.
The slightly compressible flow formulation is applied to the free-surface, three-dimensional turbulent flow around a Wigley hull. Two turbulence models (large eddy simulation and Baldwin–Lomax) are used and compared. The simulation conditions are the ones for which experimental and numerical results exist. The computational grid is built using an algebraic grid generator with the model fixed in space. The codes use the interface-capturing technique for computing the free-surface displacements and the Beam and Warming scheme for marching in time the numerical model. The results compare well with the experimental data available.  相似文献   

18.
The aim of this paper is to evaluate the accuracy, stability and efficiency of the overset grid approach coupled with the RANS (Reynolds Averaged Navier-Stokes) model via the benchmark computations of flows around a stationary smooth circular cylinder. Two dimensional numerical results are presented within a wide range of Reynolds numbers (6.31 × 104  7.57 × 105) including the critical flow regime. All the simulations are carried out using the RANS solver pimpleFoam provided by OpenFOAM, an open source CFD (Computational Fluid Dynamics) toolkit. Firstly, a grid convergence study is performed. The results of the time-averaged drag and lift force coefficients, root-mean square value of lift force coefficient and Strouhal number (St number) are then compared with the experimental data. The velocity, vorticity fields and pressure distribution are also given. One main conclusion is that the numerical solutions in regard to a fixed cylinderare not deteriorated due to the implementation of the overset grid. Furthermore, it can be an appealing approach to facilitate simulations of Vortex Induced Vibrations (VIV), which involves grid deformation. The present study is a good start to implement the overset grid to solve VIV problems in the future.  相似文献   

19.
Prediction of ship motions at high Froude number is carried out using a time domain strip theory in which the unsteady hydrodynamic problem is treated in terms of the motion of fixed strips of the water as hull sections pass through it. The Green function solution is described and the integration of the ship motion carried out by an averaging method to ensure stability of the solution. The method is validated by comparison with tank data for conventional slender hulls suitable for catamarans, small water area twin hull (SWATH) forms and hulls suitable for high-speed monohulls. Motion computations are then carried out for 14 designs with an operating speed of 40 kts and a displacement of 1000 tonnes. The vessels are assumed not to be fitted with motion control systems for the purposes of this comparative study. Motion sickness incidence is predicted to rise to between 42 and 72% depending upon the hull design in 3 m head seas of average period 7.5 s. MSI values reduce in smaller seas with a shorter average period to be less than 15% in all cases in 1m seas with an average period of 5.5 s.  相似文献   

20.
A well-known instability of the high-speed planing crafts is the porpoising instability. This instability involves periodic, coupled heave/pitch oscillations possibly experienced in a planing vessel at high speeds. The porpoising can be controlled by using external devices. Interceptors are vertical blades installed symmetrically at the aft of the craft and have been introduced as a trim control appendage. Here, based on numerical methods and Savitsky porpoising theory, the effects of hydrodynamic interceptors on the porpoising control are investigated. Using computational fluid dynamics, the pressure distribution created by interceptor and its effects on porpoising are computed and then discussed. To model the flow around the vessel model, the Reynolds Average Navier Stokes (RANS) equations are applied. The work deals with craft with and without an interceptor at different heights. A dynamic grid mode involving two degrees of freedom is used. The results show that the interceptor causes an intense pressure at the stern bottom. It also decreases the trim and resistance of the vessel and increases the lift force coefficient which directly affects the porpoising instabilities. Based on the results, the interceptor can completely control the porpoising phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号