首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
浅水方程被广泛应用于海啸预警报业务及研究,而针对线性浅水方程与非线性浅水方程在不同海区水深地形条件下的适用范围、计算效率问题是海啸研究人员急需了解的。本文应用基于浅水方程的海啸数值预报模型就海啸波在南海、东海传播的线性、非线性特征以及陆架对其传播之影响进行了数值分析研究。海啸波在深水的传播表征为强线性特征,此时线性系统对海啸波幅的模拟计算具有较高的精度和效率,而弱的非线性特征及弱的色散特征对海啸波幅的预报影响甚微,可以忽略不计。海啸波传播至浅水大陆架后受海底坡度变化、海底粗糙度等因素影响,波动的非线性效应迅速传播、积累,与线性浅水方程计算的海啸波相比表现出较大差异,主要表现为:在南海区,水深小于100m时,海啸波首波以后的系列波动非线性特征比较明显,两者波幅差别较大,但首波波幅的区别不大,因此对于该区域在不考虑海啸爬高的情况下,应用线性系统计算得到的海啸波幅也可满足海啸预警报的要求;在东海区由于陆架影响,海啸波非线性特征明显增强,水深小于100m区域,首波及其后系列波波幅均差异较大,故在该区域必须考虑海啸波非线性作用。本文就底摩擦项对海啸波首波波幅的影响进行了数值对比分析,结果表明:底摩擦作用对海啸波首波波幅影响仅作用于小于100m水深。最后,该文通过敏感性试验,初步分析了陆架宽度及陆架边缘深度对海啸波波幅的影响,得出海啸波经陆架传播共振、变形后,海啸波幅的放大或减小与陆架的宽度及陆架边缘水深有关。  相似文献   

2.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

3.
《Coastal Engineering》2006,53(2-3):149-156
Wave setup can contribute significantly to elevated water levels during severe storms. In Florida we have found that wave setup can be 30% to 60% of the total 100-year storm surge. In areas with relatively narrow continental shelves, such as many locations along the Pacific Coast of the United States, wave setup can be an even larger proportionate contributor of anomalous water levels during major storms. Wave setup can be considered as comprising two components, with the first being the well-known static wave setup resulting from the transfer of breaking wave momentum to the water column. The second, oscillating component, is a result of nonlinear transfer of energy and momentum from the primary (linear) spectrum to waves with length and time scales on the order of the wave groups.Static wave setup is the focus of this paper with emphasis on effects due to internal or surface forces that act on the wave system and cause both dissipation of wave energy and transfer of momentum. In particular, the effects of wave damping by vegetation and bottom friction are considered. Linear wave theory is applied to illustrate these effects and, for shallow water waves, the setup is reduced by two-thirds the amount that would occur if the same amount of energy dissipation occurred in the absence of forces. Effects of nonlinear waves are then considered and it is found, for a shallow water wave of approximately one-half breaking height, that a wave setdown rather than setup occurs due to damping by vegetation and bottom friction.The problem of wave setup as waves propagate through vegetation was stimulated by studies to establish hazard zones associated with 100-year storm events along the shorelines of the United States. These storms can generate elevated water levels exceeding 4 to 6 m and can result in overland wave propagation. As these waves propagate through vegetation and damp, the question arose as to the contribution of this process to elevated mean water levels through additional wave setup.  相似文献   

4.
驱动非线性浅水波的行波特征研究   总被引:2,自引:1,他引:1  
采用带有外界强迫效应的浅水动力学模式研究非线性波动、获得了依赖于外界输入形式的驱动水波的行波解。研究结果表明,驱动水波仍具有非线性波动的一般性质,而当外界强迫波速与水波固有速度一致时,水波出现共振效应,并且外界强迫孤立子将导致驱动水波孤立子产生。  相似文献   

5.
强非线性和色散性Boussinesq方程数值模型检验   总被引:1,自引:1,他引:0  
采用同位网格有限差分法,建立了强非线性和色散性Boussinesq方程数值计算模型。以稳恒波Fourier近似解给定入射波边界条件,对均匀水深深水和浅水域不同非线性的行进波、缓坡地形上深水至浅水域的浅水变形波、以及缓坡和陡坡地形上的波浪水槽实验进行了数值计算,并将计算结果与解析解、解析数值解以及实验值进行了较为详细的比较,从而检验了模型的色散性、非线性以及不同底坡下非线性波的浅水变形性能。  相似文献   

6.
The short time scale (minutes) and azimuthal dependence of sound wave propagation in shallow water regions due to internal waves is examined. Results from the shallow water acoustics in random media (SWARM-95) experiment are presented that reflect these dependencies. Time-dependent internal waves are modeled using the dnoidal solution to the nonlinear internal wave equations, so that the effects of both temporal and spatial variability can be assessed. A full wave parabolic equation model is used to simulate broadband acoustic propagation. It is shown that the short term temporal variability and the azimuthal dependence of the sound field are strongly correlated to the internal wave field  相似文献   

7.
The nonlinear interactions of waves with a double-peaked power spectrum have been studied in shallow water.The starting point is the prototypical equation for nonlinear unidirectional waves in shallow water,i.e.the Korteweg de Vries equation.By means of a multiple-scale technique two defocusing coupled Nonlinear Schrdinger equations are derived.It is found analytically that plane wave solutions of such a system are unstable for small perturbations,showing that the existence of a new energy exchange mechanism which can influence the behavior of ocean waves in shallow water.  相似文献   

8.
In this paper, the water waves and wave-induced longshore currents in Obaky coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.  相似文献   

9.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   

10.
基于二阶斯托克斯波理论推导了辐射应力的垂向分布表达式,通过算例讨论了辐射应力在深水和有限水深条件下的垂向分布规律,并与基于微幅波理论的辐射应力进行了比较.结果表明,在波浪非线性不强时,基于二阶斯托克斯波理论的辐射应力与基于微幅波理论的辐射应力表达式计算结果接近;而当水深较浅波浪非线性较强时,基于二阶斯托克斯波理论的辐射应力在近表面处明显大于基于微幅波理论的辐射应力.采用二阶斯托克斯波理论推导的波浪辐射应力更为合理地反映了波浪非线性效应.  相似文献   

11.
In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question of coincidence of the nonlinear wave profile, spectrum and its distributions of maximum (or minimum) values of the sea surface elevation with results derived from some existing nonlinear theories is expounded under the narrow-band spectrum condition. Taking the shoaling sea wave as an example, the nonlinear random wave process and its spectrum in shallow water are retrieved from both the non-Gaussian characteristics of the sea surface elevation distribution in shallow water and the normal sea waves in deep water and compared with the values actually measured. Results show that they can coincide with the actually measured values quite well, thus, this can confirm that the method proposed in this paper is feasible.  相似文献   

12.
In this paper, we derive an unsteady refraction–diffraction model for narrowbanded water waves for use in computing coupled wave–current motion in the nearshore. The end result is a variable coefficient, nonlinear Schrödinger-type wave driver (describing the envelope of narrow-banded incident waves) coupled to forced nonlinear shallow water equations (describing steady or unsteady mean flows driven by the short-wave field). Comparisons with experimental data show that good accuracy can be obtained for cases of nonbreaking wave transformation. Numerical simulations show that the interaction of wave groups with longshore topographic nonuniformities generates strong edge wave resonances, providing a generating mechanism for low-order edge waves.  相似文献   

13.
It is a good test for a numerical model to simulate progressive waves propagating over a submerged bar with a relatively high ratio of slopes. In this paper, the combined IB–VOF model is used to predict nonlinear dispersive waves propagating over a submerged bar with both slopes of 1:2. The predicted free surface elevations are compared with the experimental data and numerical results presented by other researchers. The comparison shows that the IB–VOF model is able to provide satisfactory wave profiles in the shallow water with strong nonlinear effects and in the wave transmitted region with strong wave dispersion in particular. Moreover, the wave evolution behind the submerged bar is described in detail, including the spatial wave profile modulation, spectral analysis of the time-series waves, flow velocity and pressure fields, and kinetic energy distribution. The effect of fluid viscosity on the numerical simulations is also studied, and it is found that the effect on the wave evolution considered in this paper is not significant. Finally, the hydrodynamic force acting on the bar is calculated using the IB–VOF model.  相似文献   

14.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   

15.
Wave–current laboratory experiments have shown that the logarithmic current profile observed in pure current flows is modified due to the presence of waves. When waves propagate opposite the current, an increase in the current intensity is achieved near the mean water level, while a reduction is obtained for following waves and currents. With the aim of analyzing these nonlinear effects along the whole water column, an Eulerian wave–current model is presented. In contrast to previously presented wave–current models, the present is able to include the variation of the free surface elevation due to the wave motion and the effect of a non hydrostatic pressure field. Therefore it does not restrict its application to waves in shallow waters. Moreover, the model is able to simulate all the possible angles between waves and currents.  相似文献   

16.
In this paper, we study the harmonic generation and energy dissipation as water waves propagating through coastal vegetation. Applying the homogenization theory, linear wave models have been developed for a heterogeneous coastal forest in previous works (e.g. [17], [10], [11]). In this study, the weakly nonlinear effects are investigated. The coastal forest is modeled by an array of rigid and vertically surface-piercing cylinders. Assuming monochromatic waves with weak nonlinearity incident upon the forest, higher harmonic waves are expected to be generated and radiated into open water. Using the multi-scale perturbation theory, micro-scale flows in the vicinity of cylinders and macro-scale wave dynamics are separated. Expressing the unknown variables (e.g. velocity, free surface elevation) as a superposition of different harmonic components, the governing equations for each mode are derived while different harmonics are interacting with each other because of nonlinearity in the cell problem. Different from the linear models, the leading-order cell problem for micro-scale flow motion, driven by the macro-scale pressure gradient, is now a nonlinear boundary-value-problem, while the wavelength-scale problem for wave dynamics remains linear. A modified pressure correction method is employed to solve the nonlinear cell problem. An iterative scheme is introduced to connect the micro-scale and macro-scale problems. To demonstrate the theoretical results, we consider incident waves scattered by a homogeneous forest belt in a constant shallow depth. Higher harmonic waves are generated within the cylinder array and radiated out to the open water region. The comparisons of numerical results obtained by linear and nonlinear models are presented and the behavior of different harmonic components is discussed. The effects of different physical parameters on wave solutions are discussed as well.  相似文献   

17.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

18.
This paper aims at validating the three-wave quasi-kinetic approximation for the spectral evolution of weakly nonlinear gravity waves in shallow water. The problem is investigated using a one-dimensional numerical wave propagation model, formulated in the spectral representation. This model includes both a nonlinear triad interactions term and a wave breaking dissipation term. Some numerical tests were carried out in order to show the importance of using the triad nonlinear term in wave propagation spectral models, particularly to describe both behavior of the spectral integral parameters and of the spectral shape evolution in shallow water depth. Furthermore; a comparison against different set of experimental observations was carried out. Comparing the numerical results with the experimental observations made it possible to show the modeling efficiency of the three-wave quasi-kinetic approximation.  相似文献   

19.
Computation of solitary waves during propagation and runup on a slope   总被引:1,自引:0,他引:1  
A numerical time-simulation algorithm for analysing highly nonlinear solitary waves interacting with plane gentle and steep slopes is described by employing a mixed Eulerian–Lagrangian method. The full nonlinear free surface conditions are considered here in a Lagrangian frame of reference without any analytical approximations, and thus the method is valid for very steep waves including overturning. It is found that the runup height is crucially dependent on the wave steepness and the slope of the plane. Pressures and forces exerted on impermeable walls of different inclinations (slopes) by progressive shallow water solitary waves are studied. Strong nonlinear features in the form of pronounced double peaks are visible in the time history of pressure and force signals with increasing heights of the oncoming solitary waves. The effect of nonlinearity is less pronounced as the inclination of the wall decreases with respect to the bottom surface.  相似文献   

20.
Wave-tide-surge coupled simulation for typhoon Maemi   总被引:1,自引:0,他引:1  
The main task of this study focuses on studying the effect of wave-current interaction on currents, storm surge and wind wave as well as effects of current induced wave refraction and current on waves by using numerical models which consider the bottom boundary layer and sea surface roughness parameter for shallow and smooth bed area around Korean Peninsula. The coupled system (unstructured-mesh SWAN wave and ADCIRC) run on the same unstructured mesh. This identical and homogeneous mesh allows the physics of wave-circulation interactions to be correctly resolved in both models. The unstructured mesh can be applied to a large domain allowing all energy from deep to shallow waters to be seamlessly followed. There is no nesting or overlapping of structured wave meshes, and no interpolation is required. In response to typhoon Maemi (2003), all model components were validated independently, and shown to provide a faithful representation of the system’s response to this storm. The waves and storm surge were allowed to develop on the continental shelf and interact with the complex nearshore environment. The resulting modeling system can be used extensively for prediction of the typhoon surge. The result show that it is important to incorporate the wave-current interaction effect into coastal area in the wave-tide-surge coupled model. At the same time, it should consider effects of depth-induced wave breaking, wind field, currents and sea surface elevation in prediction of waves. Specially, we found that: (1) wave radiation stress enhanced the current and surge elevation otherwise wave enhanced nonlinear bottom boundary layer decreased that, (2) wind wave was significantly controlled by sea surface roughness thus we cautiously took the experimental expression. The resulting modeling system can be used for hindcasting (prediction) the wave-tide-surge coupled environments at complex coastline, shallow water and fine sediment area like areas around Korean Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号