首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The waters near the Antarctic Peninsula have always been a study hot spot because of their variable and unique oceanographic conditions.To determine the distribution and possible influencing factors on phytoplankton size and abundance near the Antarctic Peninsula,a large-scale survey was conducted during the austral summer of2018.Samples were collected in 27 stations located in the Drake Passage(DP),South Shetland Islands(SSI),and South Orkney Islands(SOI).Phytoplankton communities were described using chlorophyll a(Chl a),flow cytometry and light microscopy to cover a size range from pico-to microphytoplankton.Nanophytoplankton,especially small nanophytoplankton(2-6 μm) with abundance ranging from 0.66 ×10~3 cells/mL to 8.46 ×10~3 cells/mL,was predominant throughout the study area.Among different regions,there was an obvious size shift.The proportion of picophytoplankton near the Elephant Island(EI) and DP was higher than other regions,and larger cells were found mainly in east of SOI.The distribution of phytoplankton abundance detected by flow cytometry was not completely consistent with Chl a concentrations due to the contribution of larger cells to Chl a.Possible influencing factors on the phytoplankton size distribution were discussed.The properties of water masses such as temperature and salinity can influence the phytoplankton size distribution.Correlation analysis revealed that only picophytoplankton is significantly correlated with salinity.Light and Fe availability might affect phytoplankton abundance and size distribution especially near the waters of SSI and EI in this study.It was also speculated that the abundance of cryptophytes is possibly related to ice melting.  相似文献   

2.
The metazoan meiofauna in the Chukchi Sea were collected from seven shallow water stations(depths ranging 46 to 52 m) and five deep sea stations(depths ranging between 393 and 2 300 m) during the 4th Chinese National Arctic Research Expedition in 2010. The results showed that abundance of meiofauna was higher in shallow water sediments(average of 2 445 ind./(10 cm2)) than in deep sea sediments(407.06 ind./(10 cm2)). A UNIANOVA test for difference between the two different regions was highly significant(F=101.15, p0.01). Nematodes were numerically dominant, representing(96.6±4.6)% of the total meiofaunal abundance at the shallow water stations and(98.90±1.42)% at deep sea stations. The number of higher taxonomic groups and abundance of meiofauna were higher at Stas CC1, CC4, and R06 near the Bering Strait and the continent, than at the rest of the shallow water and deep sea stations. The primary factors causing the differences were concentrations of nutrients P and Si of bottom seawater(R=0.831, p0.003), followed by depth(R=-0.655, p0.05) and sand fractions of sediments(R=0.632, p 0.05). The numbers of meiofauna on the 65 μm and 32 μm sieves were significantly higher than those on the rest of the screens. Differences in numbers of meiofauna retained on screens with different mesh openings were highly significant among all sampling stations(F=31.60, p0.01). The highest numbers of individuals on screens with 32 μm mesh openings were found at deep sea stations. The number of meiofauna in the top 0–1, 1–2, and 2–4 cm segments constituted 84.4% of the total and was significantly higher than those in the bottom 4–6 and 6–10 cm segments(F=15, p0.01).  相似文献   

3.
琼东上升流(EHU)是南海北部最强劲的上升流系统之一。它的水动力过程已经被很多研究所揭示,但是它的浮游植物群落依然不清楚。通过利用卫星遥感数据和2015年上升流季节的航次数据,我们首次阐明了琼东上升流区域(EHU)和其临近区域雷州半岛东部上升流区(ELPU)浮游植物生物量和群落的空间结构。在夏季季风的驱动下,我们在琼东沿岸发现了一个显著的低温高盐冷舌。由于雷州半岛东部大陆架宽广平缓,ELPU比EHU相对较弱。在EHU,由于受潮汐和风浪混合的影响,高溶解氧浓度 (>6.0 mg/l)几乎从表层延伸到30米深度。其次,低溶解氧的海水(<6.0 mg/l, 缺氧)被上升流从底层抽吸到上层。ELPU和EHU相比有更差的DO状况,在EHU,底层DO浓度由于大量的消耗,浓度甚至低于3.5 mg/l。在EHU,浮游植物生物量最大值出现在30米水层而不是在表层,约为1.5 mg/m3。这表明了上升流对于浮游植物生长和DO分布的影响范围。由于营养物质输入丰富, ELPU处的浮游植物生物量比EHU高很多。在EHU处,浮游植物生物量最大值可以达到4.0 mg/m3。浮游植物生物量在EHU和ELPU的沿岸区域则降低到了大约0.2~0.3 mg/m3,而这个值与远海接近。在EHU的近岸,浮游植物群落结构被硅藻所主宰,大约占了浮游植物生物量的50%。原核生物(大约40%)、绿藻(大约20%)、原绿球藻(大约20%)组成了EHU的近岸的主要群落。在ELPU,硅藻大约占了浮游植物生物量的80%,其次是绿藻,这表明与EHU相比,这个区域是一个相对不同的生态系统。  相似文献   

4.
2003年夏季和2004年夏、秋季,分别在浙江沿岸海域10m等深线(以下称内侧海域)和50 m等深线(禁渔线附近,以下称外侧海域)处共设置37个站位,对采集于大、小潮汛期间的浮游植物样品进行了种类组成、优势种、细胞丰度分布和群落结构特征的调查研究,并分析了其分布特征与环境因子的关系.结果表明,调查海域共鉴定出浮游植物3...  相似文献   

5.
碱性磷酸酶活性(alkaline phosphatase activity, APA)是海洋研究中用于反映浮游植物磷限制状态的重要指标。在长江口等“氮过剩”海域,磷是控制海域初级生产力水平的主要因子,然而,磷限制的范围常常难以界定,当前对不同粒级浮游植物的磷限制效应所知甚少。该文根据2020年夏季长江口航次资料,给出了海洋表层各粒级浮游植物(Net:≥20 μm;Nano:2~20 μm;Pico:0.8~2 μm)APA、浮游细菌APA(0.2~0.8 μm)和溶解态APA(<0.2 μm)的空间分布特征,并分析了APA与环境要素间的相关性。结果显示,各粒级浮游植物APA均与无机磷酸盐浓度(dissolved inorganic phosphate, DIP)呈显著负相关,这表明DIP浓度是影响浮游植物APA分布的主要因素。在平面分布上,各粒级浮游植物APA在近口门的光限制区均较低,且呈现自口门向外逐渐升高的趋势,与DIP的分布特征相反。Net和Nano级APA[平均值分别为 (40.28±32.35) nmol/(L·h)和(52.38±34.78) nmol/(L·h)]显著高于Pico级APA[平均值为(28.43±20.23) nmol/(L·h)],这表明大粒级浮游植物可能更易受DIP下降的影响。该研究中,诱导浮游植物APA快速升高的DIP浓度为0.159 μmol/L,与近岸区磷限制经验阈值相接近。该研究揭示了夏季不同粒级浮游植物对长江口磷分布的响应特征,有助于理解长江口初级生产过程的环境调控机制。  相似文献   

6.
依据2006~2007年夏、冬两季的北黄海海洋综合调查资料,分析了叶绿素和初级生产力的空间分布和季节变化特征,并浅析了其主要影响因素.夏季北黄海Chl a的平均含量为30.75 mg·m-2(7.64~92.57 mg·m-2),冬季平均含量为18.72 mg·m-2(3.04~50.55 mg·m-2),与夏季相比显著偏低(P<0.05).夏季Chl a浓度的垂直分布呈现较为明显的分层现象,最大值基本出现在次表层;冬季大部分海域垂直分布均匀.夏季水柱初级生产力含量的平均值为471.2 mg·m-2·d-1(70.1~1 308.2 mg·m-2·d-1),其分布大致呈现近岸海域高、东部开阔海域较低的格局;冬季平均值为125.4 mg·m-2·d-1(72.6~245.5 mg·m-2·d-1),约为夏季的1/4,且分布较均匀.北黄海夏季磷酸盐可能成为限制浮游植物生长的因素,而冬季无机氮和磷酸盐可能同时成为限制因子.夏季和冬季的海表温度与表层Chl a浓度之间均呈负相关关系,R2分别为0.44(P=0.01,n=73)和0.41(P=0.01,n=71).  相似文献   

7.
Plankton respiration is an important part of the carbon cycle and significantly affects the balance of autotrophic assimilation and heterotrophic production in oceanic ecosystems. In the present study, respiration rates of the euphotic zone plankton community(CR_(eu)), size fractionated chlorophyll a concentration(Chl a), bacterial abundance(BAC), and dissolved oxygen concentration(DO) were investigated during winter and summer in the northern South China Sea(n SCS). The results show that there were obvious spatial and temporal variations in CR_(eu) in the n SCS(ranging from 0.03 to 1.10 μmol/(L·h)), CR_(eu) in winter((0.53±0.27) μmol/(L·h)) was two times higher than that in summer((0.26±0.20) μmol/(L·h)), and decreased gradually from the coastal zone to the open sea. The distribution of CR_(eu) was affected by coupled physical-chemical-biological processes, driven by monsoon events. The results also show that CR_(eu) was positively correlated with Chl a, BAC, and DO, and that BAC contributed the highest CR_(eu) variability. Furthermore, the results of the stepwise multiple linear regression suggest that bacteria and phytoplankton were the dominant factors in determining CR_(eu)(R~2 = 0.82, p0.05) in the n SCS. Based on this relationship, we estimated the integrated water column respiration rate(CRint) within 100 m of the investigated area, and found that the relationship between the biomass of the plankton community and respiration may be nonlinear in the water column.  相似文献   

8.
应用荧光显微直接计数法,研究了2006年夏季长江口及邻近海域浮游细菌、浮游病毒数量的分布特征,探讨了它们与环境因子之间的关系.结果表明:(1)浮游细菌数量为(6.92×105~5.54×106)个/mL,浮游病毒数量为(2.22×106~9.97×107)个/mL.浮游细菌和浮游病毒数量的平面分布特征较一致,均为近海过...  相似文献   

9.
Global warming has caused Arctic sea ice to rapidly retreat,which is affecting phytoplankton,the primary producers at the base of the food chain,as well as the entire ecosystem.However,few studies with large spatial scales related to the Arctic Basin at high latitude have been conducted.This study aimed to investigate the relationship between changes in phytoplankton community structure and ice conditions.Fifty surface and 41 vertically stratified water samples from the western Arctic Ocean(67.0°–88°26′N,152°–178°54′W) were collected by the Chinese icebreaker R/V Xuelong from July 20 to August 30,2010 during China's fourth Arctic expedition.Using these samples,the species composition,spatial distribution,and regional disparities of phytoplankton during different stages of ice melt were assessed.A total of 157 phytoplankton taxa(5 μm) belonging to 69 genera were identified in the study area.The most abundant species were Navicula pelagica and Thalassiosira nordenskioeldii,accounting for 31.23% and 14.12% of the total phytoplankton abundance,respectively.The average abundance during the departure trip and the return trip were 797.07×10~2 cells/L and 84.94×10~2 cells/L,respectively.The highest abundance was observed at Sta.R09 in the north of Herald Shoal,where Navicula pelagica was the dominant species accounting for 59.42% of the abundance.The vertical distribution of phytoplankton abundance displayed regional differences,and the maximum abundances were confined to the lower layers of the euphotic zone near the layers of the halocline,thermocline,and nutricline.The species abundance of phytoplankton decreased from the low-latitude shelf to the high-latitude basin on both the departure and return trips.The phytoplankton community structure in the shallow continental shelf changed markedly during different stages of ice melt,and there was shift in dominant species from centric to pennate diatoms.Results of canonical correspondence analysis(CCA) showed that there were two distinct communities of phytoplankton in the western Arctic Ocean,and water temperature,ice coverage and silicate concentration were the most important environmental factors affecting phytoplankton distribution in the surveyed sea.These findings will help predict the responses of phytoplankton to the rapid melting of Arctic sea ice.  相似文献   

10.
通过楚科奇海北部–加拿大海盆西侧交接地带的生态调查,我们发现0~150 m海域水体中以融冰水(MW,0~20 m)、白令海夏季水(s BSW)和阿拉斯加沿岸流(ACW)等水团为主。水温和营养盐变化与水团息息相关,物理–生化的耦合作用进一步影响了浮游植物分布和群落结构。叶绿素a浓度最大值多位于约50 m深、富含营养盐的s BSW和ACW暖水团中。sBSW和ACW中分别以小型(占比约74%)和微微型(占比约65%)浮游植物为主。藻华初期,溶解无机氮(DIN)虽呈相对限制状态,但仍高于浮游植物生长所需阈值。双单元混合模型显示:浮游植物对氮去除明显,氮吸收量与叶绿素a浓度呈正比,且在温度略高的ACW水团中氮吸收量高于s BSW水团。在北极变暖、波弗特流涡增强以及ACW和sBSW营养盐补给下,该区域的浮游植物的叶绿素a浓度(均值:(0.327±0.163)mg/m3,范围:0.04~0.69 mg/m3)与历史数据相比有所提高。这将增加北极海区的碳吸收通量,有利于其作为碳汇区的发展。  相似文献   

11.
陈莹  赵辉 《海洋学研究》2021,39(3):84-94
本文使用2003年1月—2019年12月MODIS遥感数据,结合海表温度、风速分析南海中西部叶绿素质量浓度分布特征和影响因素。结果显示南海中西部叶绿素质量浓度分布存在时空变化。EOF分解表明,EOF1可能反映台风等极端天气对叶绿素的影响;而EOF2 和EOF3均反映了夏季沿岸上升流对叶绿素分布的影响。相关分析表明南海中西部叶绿素质量浓度与海面风场呈正相关(r=0.87,p<0.01),与海表温度呈负相关(r=-0.59,p<0.05)。夏季在西南季风影响下越南东南沿海形成上升流,导致该区浮游植物旺发、叶绿素质量浓度升高;冬季受强东北季风影响,研究区海洋上层混合作用强烈,营养盐供应增加,促进了浮游植物生长,叶绿素质量浓度高于其他季节。  相似文献   

12.
As one of the most common and dominant species in the Southern Ocean, Antarctic krill(Euphausia superba)play a significant role in food web structure and the process of energy flow. The diet of Antarctic krill in the Prydz Bay during austral summer of 2012/2013 was investigated and the ontogenetic shift in krill diet was evaluated using the stable isotope method. The nitrogen stable isotope values(δ~(15) N) of adults((2.78±0.58)‰) were much higher than those of juveniles((1.69±0.70)‰), whereas the carbon stable isotope values(δ~(13) C) of adults(–(28.26±1.08)‰) were slightly lower than those of juveniles(–(27.48±1.35)‰). Particulate organic matter(POM)from 0, 25, and 50 m depth combined(0/25/50 m) represented phytoplankton food items. The results showed that phytoplankton food items in surface water and mesozooplankton were two essential food items for Antarctic krill in the Prydz Bay during summer. POM(0/25/50 m) contributes 56%–69% and 26%–34% to the diet of juvenile and adult krill, respectively, whereas mesozooplankton composes 13%–34% and 58%–71% of the diet of juvenile and adult krill, respectively. Thus, an ontogenetic diet shift from POM(0/25/50 m), which consists mainly of phytoplankton, to a higher trophic level diet containing mesozooplankton, was detected. The capacity for adults to consume more zooplankton food items may minimize their food competition with juveniles, which rely mostly on phytoplankton food items. This suggests "diet shift with ontogeny" which may somehow help krill keep their dietary energy budget balanced and well adapted to the Antarctic marine ecosystem as a dominant species.  相似文献   

13.
Phytoplankton growth rates and mortality rates were experimentally examined at 21 stations during the 2017 spring intermonsoon(April to early May) in the northern and central South China Sea(SCS) using the dilution technique, with emphasis on a comparison between the northern and central SCS areas which had different environmental factors. There had been higher temperature but lower nutrients and chlorophyll a concentrations in the central SCS than those in the northern SCS. The mean rates of phytoplankton growth(μ_0) and microzooplankton grazing(m) were(0.88±0.33) d~(–1) and(0.55±0.22) d~(–1) in the central SCS, and both higher than those in the northern SCS with the values of μ_0((0.81±0.16) d~(–1)) and m((0.30±0.09) d~(–1)), respectively.Phytoplankton growth and microzooplankton grazing rates were significantly coupled in both areas. The microzooplankton grazing impact(m/μ_0) on phytoplankton was also higher in the central SCS(0.63±0.12) than that in the northern SCS(0.37±0.06). The microzooplankton abundance was significantly correlated with temperature in the surface. Temperature might more effectively promote the microzooplankton grazing rate than phytoplankton growth rate, which might contribute to higher m and m/μ_0 in the central SCS. Compared with temperature, nutrients mainly affected the growth rate of phytoplankton. In the nutrient enrichment treatment,the phytoplankton growth rate(μn) was higher than μ_0 in the central SCS, suggesting phytoplankton growth in the central SCS was nutrient limited. The ratio of μ_0/μn was significantly correlated with nutrients concentrations in the both areas, indicating the limitation of nutrients was related to the concentrations of background nutrients in the study stations.  相似文献   

14.
The phytoplankton ecology of Great South Bay, New York, was studied over a 1-year period. The study area, a large barrier island estuary (coastal lagoon with estuarine circulation), was characterized by high levels of inorganic nutrients, high turbidity and a shallow euphotic zone (<2 m). Net annual primary production by phytoplankton was high—450 g C m?2 year?1—and accounted for approximately 85% of the total ecosystem primary production. Chlorophyll a-specific productivity was dependent on mean photic zone light intensity in areas of the bay <1 m in depth from September 1979 through June 1980; 65–95% of the total light extinction in those areas was attibutable to suspended solids. Nitrogenous nutrient concentration did not limit phytoplankton productivity. Diatom and dinoflagellate cell densities varied greatly over time, while cryptomonad and chlorophyte species were abundant throughtout the year. Chlorophytes of 2–4 μm (‘small forms’) were numerically dominant, and contributed approximately half of the total phytoplankton biomass. Dilution of bay water by intruding ocean water appeared to control the spatial distribution of chlorophyll a on the south side of the bay; in other areas, growth appeared to exceed the rate of dilution by flushing. Waters entrained in eelgrass beds were significantly higher in salinity and mean photic zone light intensity, and had lower phytoplankton standing stock and depth-integrated primary production than control areas; waters in the sediment plume of active clamdigging boats were statistically similar to control areas with respect to water quality and phytoplankton community characteristics.  相似文献   

15.
水团对吕宋海峡浮游植物群落结构的影响   总被引:2,自引:0,他引:2  
根据2008年8月18日至9月19日在吕宋海峡3个断面获得的0~200 m层浮游植物数据,探讨了群落结构及其与不同理化性质水团的关系。本研究共鉴定浮游植物4门61属169种(包括变种、变型和未定种),其中甲藻和硅藻物种数基本相当,各占所有物种数的50%左右;另记录了金藻门3属3种;蓝藻门1种。海区优势种为卡氏前沟藻Amphisdinium carterae、锥状施克里普藻Scrippsiella trochiodea、角毛藻Chaetoceros sp.和原甲藻Prorocentrum sp.。丰度范围是(0.08~9.48)×106个/m3,平均为1.448×106个/m3。甲藻占总细胞丰度的74.68%;硅藻占24.96%。在水平方向,B断面和C5站浮游植物丰度较高,甲藻主要分布于远离陆地的海峡中部,而硅藻主要分布于台湾岛和吕宋岛附近;浮游植物垂直分布主要在水体的0~50 m层。聚类分析并结合水文数据表明浮游植物基本可划分为3个类群,分别受南海水、黑潮水和混合水的影响。南海水与黑潮水交汇的锋面区域,具有较周围区域更高的物种数、水柱平均丰度及硅甲藻丰度比,体现出强烈的锋面效应。  相似文献   

16.
During the period August 1985 to May 1986, phytoplankton in the southern Taiwan Strait was collected and studied for distributional variability in relation to hydrography. The results indicated that maximum standing crops of phytoplankton occurred in October and May due to the outgrowth of certain species of diatoms and blue-green algae. The majority of phytoplankton appeared in the water in the top 25 m and occurred in distinct clusters under the influence of water movement. Multivariate analysis indicated that hydrographic parameters, which accounted for the variability of phytoplankton distribution, varied seasonally. Vertical, spatial and temporal variabilities were also apparent. The close relationship between hydrography and algal distribution justifies the use of variations in the phytoplankton population as a useful tracer of water movement.  相似文献   

17.
2009年1月在南海北部海域的5个站位,采用稀释法和显微分析技术研究了浮游植物生长率及微型浮游动物对浮游植物的摄食压力,同时测定了微型浮游动物的丰度及类群组成.结果表明:南海北部微型浮游动物类群主要以无壳纤毛虫为主,南海北部微型浮游动物类群细胞丰度为33~529个/dm3.南海北部浮游植物生长率为0.45~1.83 d-1,微型浮游动物摄食率为0.44~1.76 d-1,摄食压力占浮游植物现存量的42.6%~82.8%,占初级生产力的97.3%~225.1%.近岸区摄食压力比陆架区高,表明冬季南海近岸区微型浮游动物摄食能够有效的控制浮游植物的生长,而陆架区浮游植物生长率大于摄食率,浮游植物存在着现存量的积累,微型浮游动物并不能完全控制浮游植物的生长.  相似文献   

18.
Three types of primary productivity (PP) models were evaluated in a mesoscale area around the South Shetland Islands (Antarctica). Input variables were: phytoplankton carbon biomass, Chlorophyll a, sea water temperature, daily irradiance, among others, collected in situ during an oceanographic cruise (COUPLING, January 2010). Models of the first type were based on Chl a measurements: the widely used model VGPM (Behrenfeld and Falkowski, 1997) and a derived version developed for the Western Antarctic Peninsula (Dierssen et al., 2000). The second type included two models based on phytoplankton carbon biomass: one developed for the whole Southern Ocean (Arrigo et al., 2008) and one based on the Metabolic Theory of Ecology developed by López-Urrutia et al. (2006), being the first time that a model with these features is used for Antarctic waters. The third type was an updated version of the carbon-based model CbPM (first described by Behrenfeld et al. (2005)) based on the Chl a/carbon biomass ratio modulation. The degree of agreement among the results between the different types of models turned out to be low (> 30% of difference), but high within models of the same type (< 10% of difference). Biomass-based model predictions differed the most from those estimated by the other two types. The differences in PP estimates were primarily attributed to the different ways these models treat the phytoplankton assemblage, along with the difference in input variables. Among the five models evaluated, the output from the modified version of the CbPM showed the lowest bias (0.55) being the most realistic. It made a special attempt to detect the factors controlling phytoplankton physiological state, showing a nutrient limitation towards the Drake area similar to the one observed for the in situ PP values.  相似文献   

19.
The Clarion-Clipperton Zone (CCZ) hosts one of the largest known oceanic nodule fields worldwide and is regulated by the International Seabed Authority. A baseline assessment of diversity and distribution patterns is essential for reliable predictions of disturbed ecosystem response scenarios for sustained commercial activities in the future. In the present study, the spatial patterns and diversity of phytoplankton communities were analyzed along with upper ocean biogeochemistry, in the licensed China Ocean Mineral Resources R&D Association (COMRA) contract area and the surrounding western CCZ between August 21 and October 8, 2017. Results indicated this was a typical low-nutrient low-chlorophyll a (Chl a) environment, characterized by low levels of phytoplankton abundance and diversity. In total 112 species belonging to 4 phyla were recorded (>10 μm), with species counts including 82 diatoms, 27 dinoflagellates, 1 cyanobacteria and 2 chrysophyte. Dominant taxa in successive order of descending abundance and occurrence included Nizschia marina, Cyclotella stylorum, Dactyliosolen mediterraneus, Rhizosolenia setigera, Pseudo-nitzschia delicatissima, Thalassiothrix frauenfeldii, Synedra sp., Chaetoceros simplex and Pseudo-nitzschia circumpora. The depth-averaged abundance and Chl a concentrations were (265±233) cells/L and (0.27±0.30) μg/L, respectively. Diatoms accounted for 90.94% of the community with (241±223) cells/L, while dinoflagellates accounted for 5.67% and (15±13) cells/L. The distribution pattern exhibited the same trend as abundance, Chl a and species richness, showing subsurface maximum levels at around 100 m, with stations near 10°N having higher levels than in the north. Cluster analysis was performed in two assemblages, relating to geographic locations to the south and north of 12°N. The subsurface maximum of abundance, Chl a, species richness, dissolved oxygen and nitrite were generally corresponding to the presence of high salinity North Pacific Central Water at depths of 50?120 m. Higher availability of nitrate, phosphate and silicic acid in the subsurface may account for the shift in phytoplankton distribution, as shown by redundancy correspondence and spearman correlation analysis. Diel variation in an anchor station demonstrated prominent species succession without significant differences in oceanographic variables, among which diatoms succession resulted from the light limitation, while dinoflagellate diel variation mainly related to lateral transport of water masses. The observed patchiness in spatial phytoplankton distributional patterns was attributed to upper ocean environmental gradients in the CCZ. The baseline generated in this study could be analyzed using current conservation strategy programs associated with deep-sea mining.  相似文献   

20.
荣成靖海湾海参养殖池塘初级生产力季节变化特征   总被引:1,自引:0,他引:1  
2007年5月~2007年11月调查了山东荣成靖海湾海参养殖池塘水体中浮游植物种类组成、生物量、叶绿素含量变化以及底泥沉积物中叶绿素和脱镁叶绿素含量的变化.结果表明,海参养殖池塘水体中浮游植物共有7门,44属,62种,主要以硅藻为主.水体中浮游植物平均生物量1号池塘为17.52×10~4 /L;2号池塘为18.30×10~4 /L.水体叶绿素含量变化范围:1号池塘为1.38~5.00 μg/L;2号池塘为0.98~5.45 μg/L.池塘沉积物中叶绿素含量变化范围:1号池塘为0.66~1.67 μg/g,2号池塘为0.56~1.34 μg/g.池塘沉积物中脱镁叶绿素含量变化范围:1号池塘为2.97~5.63 μg/g;2号池塘为2.90~6.36 μg/g.1号池塘和2号池塘的浮游植物群落结构及叶绿素含量没有显著性差异(P>0.05).叶绿素,脱镁叶绿素变化趋势较为一致.海参夏眠期间,沉积物中叶绿素及脱镁叶绿素含量最高,为海参结束夏眠进入摄食提供食物储备.研究结果表明,靖海湾海参养殖池塘浮游植物以硅藻为主,养殖池塘水体浮游植物生物量较低,多样性指数较高,增加浮游植物沉降速率,增加养殖系统初级生产力可为海参提供更多食物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号