首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
自2000年以来,渤海海域每年都有赤潮发生,这往往使渤海沿海水域受其影响。卫星遥感技术和海洋水色观测卫星图像,已经成功地用于识别和观测赤潮的发生、发展和消亡。然而,由于研究的水体、使用的遥感数据和建模方法都各不相同,因此需针对渤海海域的水体特点建立特定的赤潮反演模型。本文利用MODIS光谱反射率数据和渤海海域实测叶绿素a浓度进行了相关分析,选择表达式(B10-B8)/(B13-B8)作为渤海海域赤潮反演的指标,相关系数达到0.781 5,呈现显著相关结果。研究发现2014年渤海海域赤潮灾害的时空分布特征较为明显。其中渤海海域赤潮大规模爆发的主要原因归结于其半封闭型的地理形态导致的水交换不畅和沿岸径流的大量陆源物质输入,河流输入是陆源污染入海的主要来源。然后,本文利用云覆盖较少的GOCI遥感数据,建立了一个改进型赤潮指数的赤潮反演模型,并且证明了在浑浊水域中描述赤潮的有效性。2014年5月15日、26日和30日的每小时RI图像在一天中呈现出基本一致的赤潮变化,并且一天中渤海海域的赤潮面积变化非常明显,赤潮藻类优势种的垂直迁移可能是导致赤潮表面表达短期变化的主要原因。  相似文献   

2.
叶绿素浓度是评价海水的一项重要指标,它对于渤海北部的辽东湾海域具有重要的研究价值。2011年投入使用的静止轨道水色传感器GOCI有较高的时空分辨率。利用GOCI数据获取叶绿素含量的季节分布规律,分析了辽东湾海域表层叶绿素含量时空变化及演变特征,证明了利用GOCI叶绿素产品观察赤潮的可行性。结果显示:2015年辽东湾海域叶绿素浓度在总体空间分布上呈现近岸较高、海湾中央海域较低的特点。叶绿素浓度的月平均值为3.50~5.35,秋冬季高于春夏季。秦皇岛海域叶绿素浓度普遍高于其他海域,营口海域也有较高的分布,但不及秦皇岛海域。秦皇岛沿岸海域叶绿素浓度常年保持在一个较高水平,冬季及早春受西北风影响,秦皇岛附近海域表层海流携带浮游植物流动形成了自西北向东南叶绿素浓度从高到低的分布趋势。通过2015年6月14日、17日和20日秦皇岛海域的叶绿素浓度分布观察到了一次夜光藻赤潮的发生和消亡。因此,GOCI数据可以应用于监测叶绿素浓度的时空变化和观察赤潮的发生和消亡。  相似文献   

3.
渤海叶绿素浓度时空特征分析及其对赤潮的监测   总被引:4,自引:1,他引:3  
姜德娟  张华 《海洋科学》2018,42(5):23-31
基于2014—2015年MODIS数据分析了渤海表层水体叶绿素浓度的时空特征,并对赤潮进行了遥感监测。结果表明, 5—10月,渤海表层叶绿素浓度总体较高,其中在5月份达到峰值;空间上,叶绿素浓度由近岸向渤海中部递减,其中秦皇岛附近海域、莱州湾、渤海湾、辽东湾叶绿素浓度相对较高。基于16 mg/m3的叶绿素浓度阈值和ERGB影像,成功提取了渤海赤潮信息。秦皇岛附近海域是渤海赤潮的频发区和重灾区,赤潮发生于5月份,其分布范围在5月下旬达到最大。渤海赤潮分布与底部两个低氧区位置吻合,说明赤潮爆发可能对低氧区的形成和发展起重要作用。  相似文献   

4.
构建了一种适用于河北海域二类水体的叶绿素a浓度遥感反演业务化模型。将MODIS 1B数据第一波段反射率与河北海域叶绿素a浓度实测数据进行相关分析,通过回归拟合建立遥感反演模型,并选择不同时间、不同区域的实测数据对模型精度与稳定性进行了检验。结果表明:模型相关系数为0.73,平均相对误差31.4%~35.9%之间,模型适用于河北海域叶绿素a浓度业务化遥感监测,这对于监测河北海域赤潮和富营养化状况具有重要的现实意义。  相似文献   

5.
引入地学统计学中的空间数据分析方法,利用探索性分析、全局空间自相关和局部空间自相关分析对渤海湾赤潮爆发前后的遥感叶绿素浓度数据进行了研究。结果表明,渤海湾叶绿素浓度在相邻空间位置上具有高度的正空间自相关性;赤潮前渤海湾叶绿素浓度整体较低,但局部地区的叶绿素浓度表现出较大的上升随后几天又出现下降的异常现象;叶绿素浓度的全局空间自相关指数Moran's I值在赤潮爆发前变化幅度不大,在赤潮期间表现出一些不规则的异常变化;局部Moran's I的高-高型聚集在赤潮前主要分布在渤海湾南半部,赤潮期间出现分散并逐步转移到离岸区域,赤潮后期聚集在近岸区域。分析了其中的一些变化特征及异常情况,这些异常现象有可能是赤潮发生的预兆性信号,可为赤潮预报与应急提供一种新的尝试性模式。  相似文献   

6.
利用2005~2006年每年5、8、11月份和2007年5、8、10月份厦门周边海域27个测站共9个航次现场跟踪监测资料,研究了该海域水体叶绿素含量的时空变化特征.结果表明:监测期间厦门岛周边海域表层水叶绿素a含量在0.28~28.55μg/dm^3之间,平均值为3.47μg/dm^3,平均占总叶绿素含量的70.4%;底层海水的相应值分别为0.29~18.69、3.36μg/dm^3和71.8%.表层海水叶绿素b含量在0.00~6.95μg/dm^3之间,平均值为0.78μg/dm^3;底层水的相应值分别为0.00~4.15、0.72μg/dm^3.表层水叶绿素c含量在0.00~8.13μg/dm^3之间,平均值为0.93μg/dm^3;底层水的相应值分别为0.00~5.51、0.83μg/dm^3.表、底层水叶绿素a含量的年际变化趋势相似,高峰值都出现在2006年,低谷值都出现在2005年,总体上呈逐年上升趋势.各年中叶绿素a含量的季节变化与某季节是否出现赤潮有明显的关系.在正常年份中,表、底层水叶绿素a含量季节变化曲线的峰、谷值较多出现在8月和11月;但出现赤潮时,则发生赤潮的当月(如2006年5月)一般都成为当年叶绿素a含量的峰值所在月.监测期间调查海域水体叶绿素a含量的平面分布较复杂,在正常情况下,尽管其各季的平面变化梯度差异明显,但仍大致呈西北沿岸水体的较高,向东南逐渐递减的分布态势,其高值区常出现在宝珠屿以西和九龙江口附近海域.但在发生赤潮时,其叶绿素a含量的平面变化增大,赤潮区水体的叶绿素a含量为高值中心.如2006年5月调查海域水体叶绿素a含量的平面变化大,出现赤潮的东南部海域的最高,九龙江口海域的次之,未观测到赤潮的同安湾和厦门西港大部海域水体的叶绿素a含量最低.  相似文献   

7.
分析了2012年春季渤海中部及其邻近海域32个站点叶绿素a和环境因子的空间分布特征及其相互关系。结果发现:渤海中部靠近黄河口邻近水域相对于其他水域,呈现出相对较高的水温和较低的盐度,这与黄河淡水输入以及近岸水深相对较浅有密切关系。营养盐浓度在空间分布上表现为黄河口附近海域较高,在垂直分布上表现为中、底层高于表层,显示出黄河水输入与沉积物营养盐再释放的影响;此外,营养盐浓度与结构显示,渤海海域存在明显的磷和硅限制,磷限制尤其严重。叶绿素a浓度的空间分布显示,表层叶绿素a浓度的高值区出现在渤海湾湾口处,而中层与底层的叶绿素a浓度高值区出现在渤海中部。主成分分析结果表明,磷酸盐和温度是影响表层叶绿素a浓度的重要因素,而中、底层叶绿素a浓度主要受磷酸盐的影响。  相似文献   

8.
新世纪渤海污染新特点   总被引:1,自引:0,他引:1       下载免费PDF全文
渤海的污染状况,在新世纪呈现出若干新特点。从污染程度和区域变化来看,新世纪渤海污染总面积总体上呈波动减小趋势,但近岸海域的污染程度却显著加重。从赤潮发生情况来看,渤海赤潮年发生次数由20世纪90年代的1位数上升至2位数;进入21世纪以来虽然赤潮年发生次数在逐渐减少,但赤潮面积总体上呈增大趋势,而且有毒藻类引发的赤潮次数和面积大幅增加。从渤海的主要污染物——营养盐浓度和比例的变化来看,近年来渤海近岸海域营养盐浓度(N、P)则呈加速增大趋势,N/P比值增幅达50%,而Si/N比值已降至0.5左右。从污染源变化来看,海上污染源的增速明显高于陆源。  相似文献   

9.
针对现场观测数据缺乏的情形,提出了一种新的利用GOCI影像反演渤海海域表层悬浮泥沙浓度(SSC)的方法。应用mMUMM大气校正算法对GOCI数据进行大气校正处理得到的GOCI遥感反射率产品后,以MODIS影像反演得到的表层悬浮泥沙浓度(SSC)作为参考值,对已应用于渤海的4种SSC反演模型进行参数化拟合,最后通过对比确定了效果最好的参数化SSC经验模型并且进行了验证。验证结果显示最优参数化模型的平均相对误差绝对值(16.0%)和均方根误差(12.2 mg/L)均相对较低,表明该模型可适用于渤海海域GOCI数据的SSC反演。通过采用建立的最优参数化SSC反演算法对2015年12月至2016年11月的GOCI数据对渤海海域的季节平均SSC进行了估计和分析。相比其他区域,渤海湾、莱州湾、辽东湾等3个海湾和黄河口附近沿岸SSC相对较高;3个海湾水体区域,从沿岸向离岸方向SSC由高变低,具有明显的浓度梯度;季节上,整个渤海海域SSC在冬季最高,夏季最低,春季与秋季相差不大。渤海SSC这些明显的空间分布特征、季节变化特性与前人研究结果一致,表明该算法应用于渤海可行。  相似文献   

10.
叶绿素a浓度是浮游植物现存量的表征。本文基于2012年春季渤海湾叶绿素实测数据,下载了相应的遥感数据,利用MODIS数据的OC3M和OC2方法进行叶绿素浓度a反演,利用GOCI数据的波段比值、OC3G以及YOC算法对叶绿素a浓度进行反演,反演结果与实测结果的空间分布趋势一致。由反演精度分析,GOCI的波段比值法与MODIS的OC3M算法的反演精度相近,GOCI数据的YOC叶绿素浓度算法在渤海湾反演精度比其他反演算法高。  相似文献   

11.
相较于船舶走航监测, 海洋水质浮标在线监测的优势在于能够获取目标海域长期、连续监测数据, 能更好地反映环境状况的动态变化。为了厘清米氏凯伦藻赤潮的发生、发展动态, 本文以2017年6月南麂附近海域米氏凯伦藻赤潮为例, 分析海洋水质浮标获取的连续监测数据, 探讨米氏凯伦藻赤潮过程叶绿素a和水环境因子动态变化特征及其与气象要素的关系。赤潮期间, 水温为22.8~26.0℃、盐度为28.8‰~31.8‰、气温为20.4~27.3℃, 该温盐范围均适宜米氏凯伦藻的细胞生长; 较高的光照强度能够支持较高的藻类细胞密度。Pearson相关性分析显示, 米氏凯伦藻细胞密度与叶绿素a浓度呈显著正相关; 溶解氧(DO)及其饱和度(DO%)、pH、水温、气温等环境因子与叶绿素a浓度呈极显著正相关, 盐度与叶绿素a浓度呈极显著负相关。向岸风生海流有利于藻种向近岸较高营养区域汇集, 为赤潮的爆发创造有利条件。赤潮过程中, 叶绿素a浓度、溶解氧饱和度、pH发生了协同变化, 据此特征可以开展赤潮短期预警。  相似文献   

12.
为进一步加强对赤潮等海洋生态灾害的动态监测,科学支撑海洋防灾减灾工作,文章基于海洋一号D卫星搭载的海岸带成像仪数据,选取北部湾、茂名近岸和陵水湾为研究区域,分析2021年2月发生的4例赤潮事件的遥感影像、叶绿素a浓度和赤潮指数特征。研究结果表明:遥感影像可清晰呈现赤潮分布状况,叶绿素a浓度和赤潮指数的异常值范围与遥感影像一致,赤潮水体的叶绿素a浓度和赤潮指数整体高于非赤潮水体。  相似文献   

13.
渤海是我国的内海,由于其独特的地理环境特点及渤海沿岸地区经济社会的快速发展导致的污染排放和生态破坏,渤海已成为我国污染最为严重的海区之一。“十五”期间虽然各级部门为渤海环境治理做出了大量努力,但渤海环境状况仍在进一步恶化。如污染总面积虽无明显的增大趋势,但近岸海域的污染程度显著加重;从赤潮发生情况来看,虽然近年来赤潮年发生次数在逐渐减少,但赤潮面积总体上呈增大趋势,而且有毒藻类引发的赤潮次数和面积大幅增加;从渤海的主要富营养化物质变化来看,近年来渤海近岸海域其浓度呈加速增大趋势;从污染源变化来看,海上污染源的增速明显高于陆源。  相似文献   

14.
胶州湾增养殖海域营养状况与赤潮形成的初步研究   总被引:12,自引:1,他引:11  
根据对胶州湾女姑山增养殖海域1998年5月~9月的连续监测资料,参照潜在性富营养化的概念,应用NQI指数对该海域的营养状况进行分析。认为该海域水质富营养化是7月3~8日Skeletonemacostatum和Biddulphiaaurita混合型赤潮形成的基础,磷、硅营养盐的消耗是赤潮消亡的主要原因;赤潮消亡之后浮游植物群落发生演替,水体叶绿素a仍保持较高含量,NQI指数也相应较高,水质表现为磷限制潜在性富营养化,由于磷酸盐的限制没有发展为赤潮。  相似文献   

15.
风暴潮过后秦皇岛海域两次赤潮过程浮标数据变化   总被引:1,自引:0,他引:1  
使用2016年7月22日-8月12日水质自动监测浮标数据,对秦皇岛近岸海域两次赤潮的诱因进行分析。第一次赤潮由夜光藻(Noctiluca scintillans)引发,赤潮期间Chl a浓度最高达到38.84μg/L,平均水温为26℃,盐度在15.9~29.1之间大幅度波动;第二次赤潮由诺氏海链藻(Thalassiosira nordenskioldi)和丹麦细柱藻(Leptocylindrus danicus)引起,赤潮期间Chl a浓度最高达到35.12μg/L,水温较赤潮发生前升高2℃。研究结果表明,风暴潮为夜光藻赤潮的重要诱因,温盐变化也影响着赤潮生物种类的演替。  相似文献   

16.
矫晓阳 《海洋预报》2004,21(2):56-63
首次提出并探索了采用单一参数叶绿素a进行赤潮短期预报的原理和技术。该原理主要以叶绿素a大于某一基准值时连续2d是否呈指数增长来判定未来1~3d内是否会发生赤潮。对于任何海区,都仅基于叶绿素a基准值和增长速率下限两个常数即可进行预报操作。  相似文献   

17.
今年入夏以来,我国海域频繁发生赤潮:7月2日~6日,河北省沧州岐口附近渤海西部海域率先发生赤潮,面积达1500平方公里;7月10日,南海的柘林湾海域也发生了零星赤潮,至14日发展到近1000平方公里;7月13日,鲅鱼圈、营口、葫芦岛市一带海域发生约6300平方公里的特大面积赤潮。  相似文献   

18.
悬浮物作为污染物示踪剂,对研究海区陆源污染扩散、分布极为重要。利用2008-2017年渤海多个航次的现场实测光谱和悬浮物浓度数据,研究了渤海表层悬浮物浓度遥感反演算法,发现秦皇岛海域悬浮物算法不同于其他渤海区域。将反演算法应用于GOCI静止卫星影像,得到2015年9月13日8个时相的渤海悬浮物浓度空间分布形态,并探讨了8 h短周期内的变异幅度。研究结果表明:渤海大部分悬浮物浓度较低(0~10 mg/L),短周期内变异幅度很小;悬浮物高值主要分布在以黄河三角洲为中心的渤海湾、莱州湾沿岸一带(最高可达300 mg/L),短周期内变异幅度大(60 mg/L以上,可达200 mg/L);辽东湾辽河口区域、复州湾、金州湾附近海域悬浮物浓度相对较高,金州湾部分区域短周期内变异幅度较高,或与该区域围填海等人为活动有关。  相似文献   

19.
珠江口海域条纹环沟藻赤潮的生消过程和环境特征   总被引:2,自引:2,他引:2  
2002年6月4—9日珠江口海域发生了较大规模的条纹环沟藻Gyrodiniuminstriatum赤潮,面积约150—200km2。赤潮高峰期平均盐度为4.98,细胞密度最高达2.5×106cells·L-1,占浮游植物总数量的60%—77%,持续时间为2d,其后逐渐消失,优势种被中肋骨条藻Skeletonemacostatum所取代。对该次赤潮的生消过程和环境因子变化的监测分析表明,赤潮盛期表层水体各形态氮的含量较高,是本次赤潮发生的主要诱因之一。赤潮盛期叶绿素a最大值为136.78mg·m-3,高出正常海区数十倍。DO和pH均出现异常高值现象。从6月9日起出现强降雨天气,是导致本次赤潮逐步消亡的原因。  相似文献   

20.
利用布设在广西区钦州湾的GX11、GX13两套实时在线监测浮标, 研究钦州湾2016年5月发生的红色赤潮藻(Akashiwo sanguinea)赤潮前后实时监测数据的变化情况。结果表明赤潮的暴发与消退受水文气象因素影响, 当寒流过后, 出现风速降低、气温迅速回升, 尤其是气温呈现昼夜温差小的天气状况时, 应重点监控实时在线浮标监测数据的变化。赤潮过程中pH、溶解氧浓度、叶绿素浓度存在明显的昼夜变化规律并高于正常范围, 三种环境要素具有显著的正相关; 当实时在线浮标监测中发现pH、溶解氧浓度、叶绿素浓度呈现较明显联动的强烈波动, 并且数值相对正常范围迅速升高时, 可进行赤潮预警及布置现场调查; pH、溶解氧浓度、叶绿素浓度的实时在线监测可作为预警环境要素, 为赤潮预警提供科学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号