首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本文根据2003-2009年1-5月和2011年1-5月西南大西洋海域阿根廷滑柔鱼(Illex argentinus)的生产数据,结合遥感获得的海表面温度(SST)和海表面高度(SSH)数据,利用不同权重的栖息地指数模型来预报阿根廷滑柔鱼的中心渔场。采用外包络法,利用作业次数与SST、SSH建立适应性指数(SI)模型,依据作业次数比重和产量比重来比较不同权重的算术加权模型(AWM),从而筛选出最佳模型,并对最佳模型进行验证。结果显示,确定AWM(a=0.3,SST权重为0.3,SSH的权重为0.7)为最佳模型,当栖息地适应性指数(HSI)大于0.6时,作业次数的比重为93.23%,产量比重为89.28%,当HSI小于0.4时,作业次数的比重为2.12%,产量比重为3.35%。利用2011年1-5月的生产数据和环境数据对AWM(a=0.3)进行验证,结果显示,在HSI大于0.6的海域,各月作业次数比重均在91%以上,产量比重均在95%以上。研究表明,在阿根廷滑柔鱼渔场形成中SSH比SST更为重要,基于SST和SSH的AWM(a=0.3)能够较好地预测西南大西洋阿根廷滑柔鱼的中心渔场。  相似文献   

2.
秋刀鱼(cololabis saira)作为高度洄游的大洋性鱼类,因其资源量大、分布广而成为我国远洋渔业重要的捕捞对象之一。本文根据2003~2015年我国大陆在北太平洋公海秋刀鱼的生产调查数据,结合所获得的环境数据,以秋刀鱼单位捕捞努力量渔获量(Catch Per Unit Effort,CPUE)为适应性指数(suitability index,SI),利用几何平均法、算术平均法、最大值法和最小值法分别建立基于海水海表面温度(sea surface temperature,SST)、海表面高度(sea surface height,SSH)和海表面叶绿素a浓度(sea surface chlorophyll,SSC)的综合栖息地指数(habitat suitability index,HSI)模型。并利用2015年5~11月生产数据用于HSI模型验证,T检验结果表明算术平均值法拟合效果最好(P0.05),模型准确度达70%以上,确立最适的秋刀鱼渔情预报模型,可为秋刀鱼的生产提供参考。  相似文献   

3.
为了量化比较海表层环境及温跃层环境对南太平洋长鳍金枪鱼渔场分布的影响程度;本研究采用2010-2012年南太平洋长鳍金枪鱼延绳钓渔船实际生产统计数据;结合卫星遥感所获取的海表面温度(sea surface temperature;SST)和海表面高度(sea surface height;SSH)数据以及Argo浮标所获取的温跃层上、下界水温和深度数据;运用外包络法分别构建了基于海表层环境变量、温跃层上界环境变量以及温跃层下界环境变量的3种栖息地适应性指数(habitat suitability index;HSI)模型。模型验证结果显示;基于海表层环境变量的HSI模型;HSI>0.6时所占产量比重为70.04%;投钩数量比重为70.86%;HSI>0.8时所占产量比重为24.92%;投钩数量比重为25.79%;基于温跃层上界环境变量的HSI模型;HSI>0.6时所占产量比重为82.17%;投钩数量比重为80.95%;HSI>0.8时所占产量比重为33.24%;投钩数量比重为32.69%;基于温跃层下界环境变量的HSI模型;HSI>0.6时所占产量比重为81.01%;投钩数量比重为81.54%;HSI>0.8时所占产量比重为43.51%;投钩数量比重为43.73%。研究发现;基于温跃层上界和下界环境变量的两个HSI模型预报精度明显高于基于表层环境变量的HSI模型;且基于温跃层下界环境变量的HSI模型预报精度高于基于温跃层上界环境变量的HSI模型。研究结果表明;相较于海表层环境;温跃层环境;尤其是温跃层下界环境特征对南太平洋长鳍金枪鱼资源分布的影响更为显著。  相似文献   

4.
夏季东海渔场鲐鱼产量与海洋环境因子的关系   总被引:15,自引:0,他引:15  
根据2002~2004年7~9月我国东海灯光围网渔业生产统计数据,结合卫星遥感获取的海表面温度(Sea surface temperature, SST)、叶绿素a浓度及海面高度数据(Sea surface height,SSH),分析鲐鱼渔场分布与其SST、叶绿素a浓度和SSH之间的关系.统计各月鲐鱼产量在SST、叶绿素a浓度上的频次分布,以确定各月中心渔场的最适SST和叶绿素a浓度范围,并对不同月份鲐鱼产量与SST和叶绿素a浓度关系进行分析和比较.利用Marine Explore4.0软件将每日鲐鱼产量和SSH图像进行空间展布,分析中心渔场形成与SSH分布的内在规律.研究结果显示,鲐鱼产量和当年SST成正比,东海SST的高低基本上决定了当年鲐鱼产量的高低,但并未发现叶绿素a浓度越高渔获产量也越高的规律,说明叶绿素a浓度并非鲐鱼渔场形成的最主要因素.夏季东海SST、叶绿素a浓度分布状况及其分布的季节变化决定了夏季东海鲐鱼作业渔场在东海南部和北部适宜SST、叶绿素a浓度不同的范围,但各年渔场SST以及叶绿素a浓度分布的总体趋势一致,鲐鱼产量集中分布在叶绿素a浓度较低、SST较高的东海南部渔场和叶绿素a浓度较高、SST较低的东海北部长江口渔场:7、8月鲐鱼中心渔场分布在东海南部海域,最适SST分别为27~29 ℃和28~30 ℃,最适叶绿素a浓度均为0.10~0.30 mg/m3;9月东海南部渔场最适SST为27~28 ℃,最适叶绿素a浓度为0.10~0.30 mg/m3,东海北部渔场最适SST为26~27 ℃,最适叶绿素a浓度为1.00~3.00 mg/m3.鲐鱼渔场和SSH之间有很好的匹配关系,中心鱼场通常位于SSH极大值和极小值交汇的海域、并靠近极大值海域一侧,即出现在冷水团和暖水团交汇区靠近暖水团一侧.研究表明,渔场最适SST和叶绿素a浓度以及SSH作为确定潜在中心渔场的指标各具优势,将三者结合、综合分析,预报潜在渔场的位置更为可靠.  相似文献   

5.
本文利用2003-2011年西南大西洋阿根廷滑柔鱼渔业数据和海洋环境数据,包括海表温度(sea surface temperature, SST),海面高度(sea surface height, SSH)和叶绿素浓度(chlorophyll a, Chl a),开发基于广义加性模型(GAM)和神经网络模型(NNM)的复合模型研究滑柔鱼资源时空分布。GAM用于选择关键影响因子,并分析与单位捕捞努力量渔获量(catch per unit effort, CPUE)的关系,NNM用于建立关键影响因子与CPUE之间的预报模型。结果表明:GAM选择的影响因子的偏差解释率为53.8%,空间变量(经度和纬度),环境变量(SST、SSH、Chl a)均匀CPUE之间存在显著相关性。CPUE与SST和SSH之间为非线性关系,与Chl a之间为线性关系。NNM模型的MSE和ARV较低,其精度高且稳定。此复合模型也能够解释解释西南大西洋阿根廷滑柔鱼时空变化趋势和迁徙模式。  相似文献   

6.
鲐鱼是中上层鱼类,具有较高经济价值,其种群受到气候和海洋环境的显著影响。本文根据2006-2015年7-9月中国远洋渔业数据中心提供的中国近海鲐鱼捕捞和海表温度以及海面高度两个关键环境因子的数据,构建了基于捕捞努力量的鲐鱼综合栖息地指数模型,分析研究了在不同强度厄尔尼诺和拉尼娜条件下鲐鱼栖息地适宜性的变动规律。通过计算和交叉验证,结果发现,基于算术平均法的栖息地模型能够较好地预测鲐鱼渔场栖息地适宜性指数。空间相关性结果表明,鲐鱼渔场主要作业海域范围内海表温度异常与栖息地指数值呈显著正相关关系,而海表面高度异常与栖息地指数值呈显著负相关关系。不同强度厄尔尼诺和拉尼娜事件对鲐鱼种群影响不同,具体表现为:相对于中强度厄尔尼诺事件(或中强度拉尼娜事件),超强厄尔尼诺事件(或强拉尼娜事件)驱动鲐鱼主要作业海域内温度下降(或上升),海面高度上升(或降低),鲐鱼渔场适宜栖息地面积显著减小(或增大),导致鲐鱼单位捕捞努力量渔获量骤减(或显著增加)。研究表明,中国近海鲐鱼栖息地适宜性与厄尔尼诺和拉尼娜事件显著相关,且随着异常气候事件强度的不同而发生变化。  相似文献   

7.
鲣是大洋中重要经济种类,主要分布于太平洋中西部海域,其渔场和资源丰度易受海洋环境因子影响。根据1995-2014年中西太平洋金枪鱼围网船队在主要作业海域(15°S~10°N,120°E~155°W)的生产数据,结合弱、中、强拉尼娜条件下的海表温度(SST)和海面高度(SSH)数据,运用算术平均法(AM)建立基于SST和SSH的栖息地指数综合模型。结果表明,在栖息地综合指数(HIS)大于0.6的海域,各拉尼娜时期作业比重均在60%以上。利用弱拉尼娜(2005年12月-2006年3月)、中拉尼娜(2011年10月-2012年3月)和强拉尼娜(2010年6月-2011年4月)数据进行模型验证,分析认为作业渔场主要分布在HSI大于0.6的海域,作业次数所占比重分别为53.9%、66.5%、63.6%。在中西太平洋区域,随着拉尼娜强度的增加,资源丰度上升,其渔场分布向东北和东南方向扩散。研究表明,基于SST和SSH各强度拉尼娜时期的栖息地模型均可较好预测中西太平洋鲣渔场,并为以后拉尼娜期间中心渔场的分析提供参考。  相似文献   

8.
利用栖息地适宜指数分析秘鲁外海茎柔鱼渔场分布   总被引:12,自引:4,他引:12  
根据2003—2007年秘鲁外海茎柔鱼渔获数据以及海洋环境数据[表温(SST),表温水平梯度、表层盐度(SSS)、海面高度(SSH)、叶绿素(Chl-a)浓度],利用主成分分析法确定各环境因子的权重,分别采用权重求和法和几何平均法进行栖息地适宜指数(HSI)建模分析,选择最优模型进行实证分析,结果表明,权重最高的环境因子为SST,最小的为Chl-a浓度。HSI值较高的海区一般位于200海里专属经济区外附近海域。经统计比较,用权重求和法计算所得HSI值好于几何平均法。利用2008年茎柔鱼生产数据进行实证分析,产量和作业次数随HSI值升高而增加,权重求和法的HSI模型可用于茎柔鱼渔场的实时动态预报。分析还显示,HSI分布情况与研究海域的的海洋环境密切相关,HSI不小于0.8的海区一般处在水团交汇处。  相似文献   

9.
海州湾春季皮氏叫姑鱼栖息地适宜性研究   总被引:4,自引:0,他引:4  
根据2011年及2013-2015年春季在海州湾及其邻近海域进行的底拖网调查数据,结合同步采集的底层水温、底层盐度、水深以及资源密度等数据,开展皮氏叫姑鱼(Johnius belangerii)栖息地适宜性的相关研究。利用提升回归树(boosted regression tree,BRT)模型确定各环境因子的权重,分别采用算术平均法(AMM)和几何平均法(GMM)建立栖息地适宜性指数(habitat suitability index,HSI)模型,并通过交叉验证确定最优模型。结果表明,皮氏叫姑鱼幼体最适栖息的底层水温为17.4~18.0℃,底层盐度为29.2~30.8,水深为7 m以浅;成体最适栖息的底层水温为17.3~18.0℃,底层盐度为28.8~30.8,水深为12 m以浅。根据BRT模型的输出结果显示,对皮氏叫姑鱼幼体总偏差贡献率最大的是水深,其次是底层盐度和底层水温;对成体总偏差贡献率最大的是底层水温,其次是水深和底层盐度。通过交叉验证发现,无论幼体还是成体,运用GMM算法,且赋予权重的HSI模型具有较低的赤池信息准则值(akaike information criterion,AIC)。海州湾春季皮氏叫姑鱼的最适栖息地随生长阶段而变化,幼体的最适栖息地(HSI ≥ 0.7)主要分布在7 m等深线以浅的山东、江苏沿岸海域;成体的最适栖息主要分布于12 m等深线以浅的海域。海州湾春季皮氏叫姑鱼幼体和成体最适栖息地的空间分布与其自身的生态习性、外界环境因子以及黄海冷水团、近岸沿岸流等因素密切相关。  相似文献   

10.
海表水温变动对东、黄海鲐鱼栖息地分布的影响   总被引:6,自引:2,他引:4  
海表水温(SST)通常是表征鱼类栖息地分布的主要指标。本文根据1999—2007年我国大型灯光围网的鲐鱼生产统计数据,结合海洋遥感获得的SST,分析了渔汛期间鲐鱼栖息地的适宜SST范围,探讨了SST变动情况下鲐鱼栖息地的变化趋势。研究结果表明,东、黄海鲐鱼7—12月的适宜SST范围为15~30℃。根据政府气候变化专门委员会(IPCC)第四份评估报告,本文拟定4种SST上升的情况,即(1)每月平均SST+0.5℃;(2)每月平均SST+1℃;(3)每月平均SST+2℃;(4)每月平均SST+4℃。结果显示,东、黄海鲐鱼的潜在栖息有明显向北移动的趋势,并且栖息地面积逐渐减小。研究认为,全球气候变化引起的SST上升,可能会对近海鲐鱼栖息地造成严重的影响。  相似文献   

11.
The habitat quality of Chub mackerel (Scomber japonicus) in the East China Sea has been a subject of concern in the last 10 years due to large fluctuations in annual catches of this stock. For example, the Chinese light-purse seine fishery recorded 84000 tons in 1999 compared to 17000 tons in 2006. The fluctuations have been attributed to variability in habitat quality. The habitat suitability Index (HSI) has been widely used to describe fish habitat quality and in fishing ground forecasting. In this paper we use catch data and satellite derived environmental variables to determine habitat suitability indices for Chub mackerel during July to September in the East China Sea. More than 90% of the total catch was found to come from the areas with sea surface temperature of 28.0°–29.4°C, sea surface salinity of 33.6–34.2 psu, chlorophyll-a concentration of 0.15–0.50 mg/m3 and sea surface height anomaly of −0.1–1.1 m. Of the four conventional models of HSI, the Arithmetic Mean Model (AMM) was found to be most suitable according to Akaike Information Criterion analysis. Based on the estimation of AMM in 2004, the monthly HSIs in the waters of 123°–125°E and 27°30′–28°00′ N were more than 0.6 during July to September, which coincides with the catch distribution in the same time period. This implies that AMM can yield a reliable prediction of the Chub mackerel’s habitat in the East China Sea.  相似文献   

12.
Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the AsiaPacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation(PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995–2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers(LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature(SST)and sea surface height(SSH) on the fishing ground, whereas the mixed layer depth(MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH,resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management.  相似文献   

13.
日本鲭(Scomber japonicus)是西北太平洋重要的鱼类资源之一,科学预测日本鲭的资源丰度有利于其资源的合理开发和利用。本研究依据日本渔业机构提供的1987–2012年日本鲭太平洋群体的资源量数据,结合产卵场和渔场的海洋环境数据以及气候因子,使用广义加性模型对影响日本鲭太平洋群体的海洋环境和气候因子进行分析,筛选出有显著影响的因子并建立该群体的资源量预测模型。结果表明,与该群体资源量有显著关系的影响因子有:北极涛动指数、太平洋年代际振荡指数、渔场海表面高度、渔场海表面盐度和渔场海表面温度。基于赤池信息准则筛选出的4个资源量预测模型分析表明,包含北极涛动指数、渔场海表面高度和渔场海表面温度的模型有较好的预测效果,该模型的验证结果也通过了t检验(P<0.05),可用于日本鲭太平洋群体资源量的预测。  相似文献   

14.
海洋净初级生产力影响了浮游动植物的空间分布和丰度,因此决定了海洋渔业的潜在产量。本文根据2006-2015年7-9月中国远洋渔业数据中心提供的中国近海鲐鱼捕捞数据和海洋净初级生产力遥感数据,以单位捕捞努力量渔获量(CPUE)表征资源丰度,以经度和纬度重心表征空间分布,分析研究了鲐鱼资源丰度和空间分布与海洋净初级生产力的关系。研究结果表明,2006-2015年鲐鱼产量、CPUE、经度和纬度重心呈现明显的月份和年际变化,7-9月渔场内净初级生产力空间分布模式不同。频率分布结果表明7-9月鲐鱼对应的适宜净初级生产力浓度范围分别为300~500 mg/(m2·d)(以碳计,下同),300~400 mg/(m2·d),300~400 mg/(m2·d)。相关分析结果表明,鲐鱼资源丰度与适宜净初级生产力海域范围比例呈显著正相关,且鲐鱼纬度重心与适宜净初级生产力海域平均纬度呈显著正相关关系,这表明渔场内的净初级生产力大小和分布模式显著影响鲐鱼的资源丰度和渔场重心位置。在鲐鱼主要分布海域25°~30°N,120°~130°E范围内,鲐鱼资源丰度与净初级生产力大小呈显著负相关关系。此外,不同气候条件下鲐鱼渔场净初级生产力大小变化不同,2007年和2010年强拉尼娜年份以及2009年中强厄尔尼诺年份鲐鱼渔场范围海洋净初级生产力降低,但适宜的海洋净初级生产力范围增大,导致鲐鱼资源丰度上升;而2015年超强厄尔尼诺年份鲐鱼渔场范围内海洋净初级生产力上升,但适宜的海洋净初级生产力范围显著减小,因此鲐鱼资源丰度相对降低。研究表明,中国近海鲐鱼资源时空分布与海洋净初级生产力具有显著关联。  相似文献   

15.
秘鲁外海茎柔鱼栖息地适宜性年代际变动   总被引:1,自引:0,他引:1  
茎柔鱼广泛分布于东南太平洋海域,是我国重要的远洋捕捞对象之一,其种群易受气候和栖息地环境的影响。利用海表面温度(SST)和海表面高度距平(SSHA)两个关键环境因子,计算1950?2015年1?12月秘鲁外海茎柔鱼栖息地适宜性指数(HSI),对比分析太平洋年代际涛动(PDO)位于冷暖位相下茎柔鱼渔场环境以及栖息地质量的变动。结果显示,1950?2015年PDO呈现冷、暖、冷3个位相变化,其中PDO冷位相内的SST距平(SSTA)和SSHA明显低于PDO暖位相。交相关分析结果表明,PDO指数与SSTA和SSHA均呈显著正相关,而HSI与PDO指数、SSTA和SSHA均呈显著负相关。PDO位于冷位相时,茎柔鱼渔场内水温变冷,海面高度下降,适宜的SST和SSHA范围增加,因此茎柔鱼有利的栖息地面积增大;而PDO位于暖位相时,水温增暖,海面高度上升,适宜的SST和SSHA范围缩减,导致茎柔鱼适宜的栖息地面积缩小。研究认为,太平洋年代际涛动调控了茎柔鱼渔场内的环境变化,进而对茎柔鱼栖息地质量及适宜栖息地范围产生显著影响。  相似文献   

16.
茎柔鱼主要分布于东太平洋,是我国鱿钓渔船的主要捕捞对象,气候变化对其栖息地有较大影响。本研究依据1950?2015年海表温度(SST)、海表高度距平(SSHA)以及尼诺指数(Ni?o3.4指数),计算秘鲁外海茎柔鱼栖息地适宜性指数(HSI),分析在厄尔尼诺(El Ni?o)、正常气候和拉尼娜(La Ni?a)条件下适宜栖息地的时空变动。分析表明,海表温度距平(SSTA)和SSHA与Ni?o3.4指数的变化趋势基本相同,Ni?o3.4指数与SSTA和SSHA均呈显著正相关,但与HSI值呈显著负相关。依据气候事件的定义,将研究年份划分为El Ni?o年,正常年和La Ni?a年。研究发现,在El Ni?o年,茎柔鱼渔场水温变暖,海面高度上升,适宜的SST和SSHA范围缩小,导致适宜的栖息地面积范围缩减;而在正常气候和La Ni?a年份,茎柔鱼渔场水温变冷,海面高度下降,适宜的SST和SSHA范围增大,因此适宜的栖息地面积范围增加。此外,Ni?o3.4指数和茎柔鱼渔场HSI纬度重心呈显著正相关,在El Ni?o事件下适宜的栖息地纬度重心向南偏移。研究认为,不同ENSO事件下茎柔鱼渔场环境变化显著,进而影响茎柔鱼适宜的栖息地范围及其空间分布。  相似文献   

17.
The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号