首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to quantify the soil carbon storage and sequestration rates of undisturbed natural wetlands and disturbed wetlands subject to restriction of tidal flow and subsequent rehabilitation in an Australian estuary. Disturbed and undisturbed estuarine wetlands of the Hunter estuary, New South Wales, Australia were selected as the study sites for this research. Vertical accretion rates of estuarine substrates were combined with soil carbon concentrations and bulk densities to determine the carbon store and carbon sequestration rates of the substrates tested. Relationships between estuary water level, soil evolution and vertical accretion were also examined. The carbon sequestration rate of undisturbed wetlands was lower (15% for mangrove and 55% for saltmarsh) than disturbed wetlands, but the carbon store was higher (65% for mangrove and 60% for saltmarsh). The increased carbon sequestration rate of the disturbed wetlands was driven by substantially higher rates of vertical accretion (95% for mangrove and 345% for saltmarsh). Estuarine wetland carbon stores were estimated at 700–1000 Gg C for the Hunter estuary and 3900–5600 Gg C for New South Wales. Vertical accretion and carbon sequestration rates of estuarine wetlands in the Hunter are at the lower end of the range reported in the literature. The comparatively high carbon sequestration rates reported for the disturbed wetlands in this study indicate that wetland rehabilitation has positive benefits for regulation of atmospheric carbon concentrations, in addition to more broadly accepted ecosystem services.  相似文献   

2.
Intertidal mudflats are critical to the functional ecology of estuaries yet large areas are being lost as a result of land claim, erosion and coastal squeeze. This study examines whether managed realignment (at Paull Holme Strays, Humber estuary) can realistically achieve compensation for the loss of intertidal mudflat in the long term. Typical estuarine species quickly colonised the site with the total number of species recorded from the site as a whole being almost equal to that in the reference area within one year. Comparable biomass between the two areas was achieved after 2 years. However, organism abundance remains an order of magnitude lower within the realignment site compared to outside. Community structure within the realignment has changed from one characterised by terrestrial/freshwater organisms and early colonising species to one composed of typically estuarine species. However, the developing benthic communities only represent those typical of the estuary in areas of low elevation and high inundation frequency. Rapid accretion has favoured saltmarsh colonisation in much of the realignment site and this is expected to increase as accretion proceeds with invertebrate colonisation being inhibited by increasing elevation. Hence, realignment to restore intertidal mudflats can only be a short term solution in sites of high tidal elevation and in a dynamic and turbid estuary with high natural accretion rates, such as the Humber.  相似文献   

3.
Vertical accretion in tidal marshes is necessary to prevent submergence due to rising sea levels. Mineral materials may be more important in driving vertical accretion in tidal freshwater marshes, which are found near the heads of estuaries, than has been reported for salt marshes. Accretion rates for tidal freshwater marshes in North America and Europe (n = 76 data points) were compiled from the literature. Simple and multiple linear regression analyses revealed that both organic and mineral accumulations played a role in driving tidal freshwater marsh vertical accretion rates, although a unit mass of organic material contributed ∼4 times more to marsh volume than the same mass input of mineral material. Despite the higher mineral content of tidal freshwater marsh soils, this ability of organic matter to effectively hold water and air in interstitial spaces suggests that organic matter is responsible for 62% of marsh accretion, with the remaining 38% from mineral contributions. The organic material that helps to build marsh elevation is likely a combination of in situ production and organic materials that are deposited in association with mineral sediment particles. Regional differences between tidal freshwater marshes in the importance of organic vs. mineral contributions may reflect differences in sediment availability, climate, tidal range, rates of sea level rise, and local-scale factors such as site elevation and distance to tidal creeks. Differences in the importance of organic and mineral accumulations between tidal freshwater and salt marshes are likely due to a combination of factors, including sediment availability (e.g., proximity to upland sources and estuarine turbidity maxima) and the lability of freshwater vs. salt marsh plant production.  相似文献   

4.
The impact of floating net cages culturing the seabass, Lates calcarifer, on planktonic processes and water chemistry in two heavily used mangrove estuaries in Malaysia was examined. Concentrations of dissolved inorganic and particulate nutrients were usually greater in cage vs. adjacent (approximately 100 m) non-cage waters, although most variability in water-column chemistry related to water depth and tides. There were few consistent differences in plankton abundance, production or respiration between cage and non-cage sites. Rates of primary production were low compared with rates of pelagic mineralization reflecting high suspended loads coupled with large inputs of organic matter from mangrove forests, fishing villages, fish cages, pig farms and other industries within the catchment. Our preliminary sampling did not reveal any large-scale eutrophication due to the cages. A crude estimate of the contribution of fish cage inputs to the estuaries shows that fish cages contribute only approximately 2% of C but greater percentages of N (32-36%) and P (83-99%) to these waters relative to phytoplankton and mangrove inputs. Isolating and detecting impacts of cage culture in such heavily used waterways--a situation typical of most mangrove estuaries in Southeast Asia--are constrained by a background of large, highly variable fluxes of organic material derived from extensive mangrove forests and other human activities.  相似文献   

5.
Competitive interactions among marsh plant species are mediated by the influence of the vegetation on sediment accretion and modifications of the relative elevation of the marsh surface. A model described here demonstrates some of the feedbacks between physical processes like sediment accretion and biological processes such as those that determine species zonation patterns. Changes in geomorphology, primary productivity and the spatial distribution of plant species are explained by competitive interactions and by interactions among the tides, biomass density, and sediment accretion that regulate the elevation of intertidal wetlands toward an equilibrium with mean sea level (MSL). This equilibrium is affected positively (relative elevation of the marsh surface increases) by the biomass density of emergent, salt marsh macrophytes and negatively by the rate of sea-level rise (SLR). It was demonstrated that a dominant, invading species is able to modify its environment, raising the elevation of the habitat, to exclude competitively inferior species, a process I refer to as geomorphological displacement. However, the outcome depends on a number of variables including the rate of sea-level rise and the distributions of the species across the intertidal gradient. The model predicts that a marsh will evolve toward alternative stable states, depending on the rate of sea-level rise and the species' fundamental and realized distributions within the intertidal zone.  相似文献   

6.
Saltmarsh vegetation, seston and microphytobenthos are all conspicuous components of most temperate estuaries and they potentially contribute to the estuarine food chain. Yet their relative contributions are unclear, as is the significance of saltmarsh losses through natural and human-induced impacts. This study aimed to quantitatively determine the contribution of various types of primary producers to detritus in the Walpole-Nornalup Estuary and Leschenault Inlet, two permanently open estuaries in SW Australia, and, estimate the flow of different types of detritus to higher trophic levels, using carbon ((13)C) and nitrogen ((15)N) stable isotopes as tracers. Results of the mixing model indicated that seston, microphytobenthos and to some extent seagrass and fringing saltmarsh were the main contributors to the detrital pool in both estuaries. However, the relative contribution of different primary producers varied both within and between estuaries. The contribution of saltmarsh was higher at sites close to rivers and dense fringing vegetation, while seston, microphytobenthos and seagrass dominated the detrital material at other sites. Benthic harpacticoid copepods were shown to feed on detritus though they appeared to actively select for different components of the detritus depending on site and estuary. Isotopic signatures of other consumers indicated that fish and invertebrates derived nutrients from MPB and detritus, either directly as food or indirectly through feeding on invertebrates. The overall contribution of saltmarsh to detritus was lower in Leschenault Inlet than in Walpole-Nornalup Estuary, possibly as a result of increased clearing of fringing vegetation around Leschenault Inlet. This pattern was however not reflected in harpacticoid food. Therefore, although losses of fringing saltmarsh around estuaries have the potential to significantly affect estuarine food webs, the significance of such losses will be site- and estuary-dependent.  相似文献   

7.
A change in the elevation of bare tidal flats outside a mangrove area is an indispensable factor for the sustainable development of mangroves. Waterline extraction, as an effective and economical tool used in reconstructing the terrain of an intertidal zone, has been widely applied to open-coast tidal flats by constructing a digital elevation model (DEM). However, mangrove wetlands are usually located in wave-sheltered sites, such as estuaries and bays that have narrow tidal channels flanked by tidal flats. Changes in water level are affected by the dry-wet processes of complex landforms caused by tides. This article takes as a study case the area of Yingluo Bay, which covers the core region of the Zhanjiang and Shankou National Mangrove National Nature Reserve in southwestern China. Waterline extraction based on seventeen multisource and multispectral satellite images obtained from December 2014 to April 2015, combining the finite-volume coastal ocean model (FVCOM) hydrodynamic model in an iterative process, was used to generate a topographical map of the bare tidal flat outside the mangrove area in Yingluo Bay. The quality of the iterative DEMs was evaluated via six transects of a ground-based survey using Real - time kinematic (RKT) GPS in May 2015. The mean absolute error (MAE) and root mean square error (RMSE) of the DEM decreased with an increase in the number of iterations. In this study, the DEM in the third iteration was used as the final output because the difference from the previous iterative DEM satisfied an inversion-stopping criterion. The MAE and RMSE of the final DEM with the measured data were 0.072 and 0.09?m, respectively, without considering small tidal creeks. The method used in this study can be an effective and highly precise approach for detecting and reconstructing the historical terrain of a bare tidal flat outside a mangrove area. This work also has great importance regarding intertidal resource management and the sustainable development of mangroves facing the vulnerable coastal ecological environment.  相似文献   

8.
Z. Shi 《Geo-Marine Letters》1993,13(3):182-188
Rates of saltmarsh accretion were determined for the Dyfi Estuary, central Cardigan Bay, Wales, using marker layers and X-ray radiographic laminae counts. A three-month study revealed the amount of sediment that had accumulated, totalling 2.5 mm, equivalent to 10.0 mm/yr. The saltmarsh sediment accretion rate estimated by laminae counts is 11.5 mm/yr. These data, compared with previous published data, indicate that the rate of sediment accretion has decreased since the 1920s. This is cautiously proposed as suggesting that the upward trend of relative sea level in the Dyfi Estuary may have been decreasing over the last 80 years.  相似文献   

9.
Changes in rainfall pattern have been suggested as a mechanism for the landward incursion of mangrove into salt marsh. The aim of the research was to assess the relationship between rainfall patterns and the spatial distribution of mangrove forests at study sites in Moreton Bay, Southeast Queensland, Australia, over a 32-year period from 1972 to 2004. To identify periods of relatively consistent rainfall patterns points at which rainfall patterns changed (change-points) were identified using the non-parametric Pettitt–Mann–Whitney-Statistic and the cumulative sum technique. The change-points were then used to define the temporal periods over which changes to mangrove area were assessed. Both mangrove and salt marsh area were measured by digitizing aerial photographs acquired in 1972, 1990 (the year with the most significant change-point), and 2004. The rates of change in mangrove area pre-1990 (a wetter period) and post-1990 (a drier period) were estimated. A significant positive relationship was demonstrated between rainfall variables and landward mangrove expansion, but not for seaward expansion. We concluded that rainfall variability is one of the principal factors influencing the rate of upslope encroachment of mangrove. However, the rate of expansion may vary from site to site due to site-specific geomorphological and hydrological characteristics and the level of disturbance in the catchment.  相似文献   

10.
本文于2012年4月、7月与10月以及2013年1月与4月,对福建省云霄县漳江口、龙海市九龙江口、厦门市凤林湾、泉州市洛阳江口、宁德市湾坞5片红树林湿地的海洋线虫进行采样与优势属及摄食类型研究,主要研究结果如下:采样区域优势度大于等于5%的海洋线虫优势属依次为Sabatieria、Ptycholaimellus、Parasphaerolaimus、Terschellingia、Daptonema、Viscosia和Dichromadora,优势度依次为19.82%、7.88%、7.45%、7.26%、6.79%、6.00%和5.25%。在漳江口红树林、九龙江口红树林及洛阳江口红树林均以Sabatieria为第一优势属,优势度分别为27.87%、28.37%和23.40%;凤林红树林以Terschellingia为第一优势属,优势度为18.10%;湾坞红树林以Daptonema为第一优势属,优势度为22.86%。海洋线虫摄食类型数量的季节变化如下,漳江口红树林:1B>2A>2B>1A;九龙江口红树林:1B>2B>2A>1A;凤林红树林:1B>2A>2B>1A;洛阳江口红树林:2B>1B>2A>1A;湾坞红树林:2A>1B>2B>1A。在漳江口红树林、九龙江口红树林和凤林红树林中海洋线虫均以1B型为主导,在湾坞红树林中以2A型为主导,在洛阳江口红树林是2B型为主导,在5个区域内1A型海洋线虫的丰度均为最低。  相似文献   

11.
河口海岸潮滩湿地具有重要的生态服务功能,是近年来国家海岸带保护修复重大工程的重点关注区域。江苏条子泥潮滩湿地是中国黄(渤)海候鸟栖息地(第一期)的重要组成部分,面临着潮滩湿地保护修复和海堤工程维护的统筹协调等问题。护岸工程软体排是河口海岸工程常用的维护措施,但其对潮滩湿地保护和修复的影响尚不清楚。通过野外调查、碱蓬移栽和播种试验,分析了护滩软体排工程临近区域的高程、水动力、沉积物等环境参数对盐地碱蓬(Suaeda salsa)湿地修复的影响。结果表明:1)软体排对潮滩地貌影响明显,软体排内滩面稳定,软体排外亦有掩护效果,两月内促进盐沼植被区高程增量达29 cm,软体排外光滩高程变化剧烈;软体排建造后,海堤附近滩面地形有助于碱蓬植被定植,形成的高滩上移栽碱蓬存活率达55%,而在低处潮滩无法存活。2)碱蓬植被密度和株高受到盐度、高程、中值粒径环境因子的显著影响(P<0.05,P为显著性水平),高程与碱蓬植被密度、株高正相关;盐度和中值粒径与碱蓬植被密度负相关;流速与碱蓬植被密度负相关;有效波高与碱蓬株高负相关。研究结果可为潮滩软体排护滩工程的实施、碱蓬盐沼植被定植机理和生态修复提供科...  相似文献   

12.
红树林是具有重要碳汇功能的生态系统,其保护和修复成为海洋领域应对气候变化的重要手段。适宜的生境条件是红树林生态修复成功与否的关键因素,而红树植物物种和种植措施等也决定了修复后生态系统结构和功能的发展。本研究综述了红树林生态修复固碳功能的特点,分析了生境条件、物种和种植措施等因素对红树林生态系统固碳效果的影响,以期为红树林生态修复提供参考。总体上,红树林生态修复促进了有机碳在植物体和土壤中的累积,而在生态修复初期红树植被的固碳能力高于土壤。水文条件、滩涂高程、底质条件、物种、种植密度和种苗来源等关系到修复后红树植物的生长、颗粒态有机物的沉降、有机物的输出和保留、有机质的分解等过程,进而影响生态系统的固碳能力。因此,开展红树林生态修复时选择适宜生境条件的修复地块,合理选择物种和种植措施,在提高植被恢复效果的同时可提高红树林固碳增汇的生态功能。  相似文献   

13.
潘嵩  王慧  李欢  李文善  徐浩  金波文 《海洋通报》2020,39(3):325-334
本文基于SLAMM模型分析了不同情景下海平面上升对广西沿海红树林分布面积的影响及其空间差异,通过对比实验定量分析了潮差和沉积速率的作用。结果显示,与基准年2007年相比,2100年广西红树林面积在当前海平面上升速率、典型浓度路径RCP2.6、RCP4.5和RCP8.5情景下分别减少0.57%、4.99%、7.99%和17.39%,珍珠港、茅尾海、丹兜海和英罗港受影响程度较大。当地潮差与红树林面积减少率呈负相关关系。需维持红树林生长区域的沉积速率以应对未来的海平面加速上升。  相似文献   

14.
红树林岸外光滩高程变化是红树林可持续性发展的重要环境因素。本文以南海西北部英罗湾为研究区,利用多时相多源遥感影像提取水边线,并结合迭代的FVCOM水动力模型模拟方法,建立了2008年和2015年两个时期红树林岸外光滩数字高程模型(Digital Elevation Model, DEM)。利用两个时期的反演结果进行空间叠置分析,结果表明:2008年至2015年,湾顶光滩大部分呈现稳定-淤积状态;位于海湾中部至口门的光滩,从上部到下部整体呈现从淤积-稳定-侵蚀的趋势,其中光滩中部局部出现沟壑状侵蚀,与大型潮沟的发育和摆动有关;而光滩上部冲淤的空间差异性,主要由于红树林林区扩张形态以及人类活动的干预。  相似文献   

15.
Marsh vertical accretion via vegetative growth   总被引:1,自引:0,他引:1  
Coastal marshes accrete vertically in response to sea-level rise and subsidence. Inadequate accretion and subsequent conversion of coastal marshes to open water generally is attributed to inadequate mineral sedimentation because mineral sedimentation is widely assumed to control accretion. Using 137Cs dating to determine vertical accretion, mineral sedimentation, and organic matter accumulation, we found that accretion varied with organic accumulation rather than mineral sedimentation across a wide range of conditions in coastal Louisiana, including stable marshes where soil was 80% mineral matter. These results agreed with previous research, but no mechanism had been proposed to explain accretion via vegetative growth. In an exploratory greenhouse experiment, we found that flooding stimulated root growth above the marsh surface. These results indicated the need for additional work to determine if flooding controls accretion in some marshes by stimulating root growth on the marsh surface, rather than by mineral accumulation on the marsh surface. Restoration or management that focus on mineral sedimentation may be ineffective where a relationship between accretion and mineral sedimentation is assumed rather than tested.  相似文献   

16.
《Marine Geology》2006,225(1-4):103-127
This paper examines the spatial and temporal variability in the volumetric sediment balance of Allen Creek marsh, a macro-tidal salt marsh in the Bay of Fundy. The volumetric balance was determined as the balance of inputs of sediments and organic matter via accretion on the marsh surface and outputs of sedimentary material primarily due to erosion of the marsh margin. Changes in marsh surface elevation were measured at 20 buried plates and 3 modified sediment elevation tables from 1996–2002, and detailed margin surveys were conducted in 1997, 1999 and 2001 using a differential global positioning system. Changes in surface area were calculated using GIS overlay analysis and used in conjunction with accretion and erosion data to derive volumetric estimates of gains and losses of sedimentary material in the marsh system.Currently the volumetric sediment balance at Allen Creek marsh is positive. However the processes of erosion and accretion demonstrate seasonal, annual and spatial variability. Inputs to the system include deposition on the marsh surface from sediment laden waters and from ice rafting of sediments. Sediment is deposited onto the marsh surface year round, even during the winter when vegetation cover is sparse, and the amount of deposition in general is not significantly correlated with the frequency of tidal inundations. Based on the data from 1996 to 2002, the mid and high marsh zones experience mean accretion rates of approximately 1.4 cm year 1 whereas accretion rates in the low marsh region are statistically significantly lower (0.8 cm year 1). The absolute amount of accretion varies between seasons and from year to year. The main loss to the marsh is through erosion of the marsh margin cliffs which can remove a comparatively large volume of sedimentary material in one mass wasting event and which also decreases the vegetated surface area available for deposition from sediment laden waters. The volume of material removed from the marsh margin almost tripled between 1997 (169 m3) and 2001 (502 m3) following breaching of the side of a tidal creek channel, altering the patterns of margin erosion and deposition in the marsh system. During this time, however, other sheltered areas of the marsh system, such as along the tidal creek banks, showed evidence of new vegetation growth, increasing the amount of vegetated surface area available for deposition.The processes of erosion and deposition on the marsh surface exhibit considerable spatial variability, with different regions of the marsh being more or less sensitive to seasonal variability in the dominant controls influencing sediment deposition and erosion in this system, namely wave activity, vegetation, ice and water depths. A key factor in predicting how a marsh will evolve and respond to a number of different controls, e.g. sea-level rise or reduced sediment supply, is to quantify both accretion of the marsh surface and erosion of the marsh margin, evaluating the marsh system as a volumetric whole. This study demonstrates that a marsh system should be assessed in three dimensions rather than simply as a surface of accumulation. This is particularly important for open coastal marshes exposed to the erosive action of waves.  相似文献   

17.
Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments and scientists. Mangroves sediments can provide detailed records of mangrove species variation in the last one hundred years, based on detailed 210 Pb data. The study traced the history of mangrove development and its response to environmental change over the last 140 years in two mangrove swamps of Guangxi, Southwest China. Average sedimentation rates were calculated to be 0.48 cm/a and 0.56 cm/a in the Yingluo Bay and the Maowei Sea, respectively. Chemical indicators(δ13Corg and C:N) were utilized to trace the contribution of mangrove-derived organic matter(MOM) using a ternary mixing model. Simultaneous use of mangrove pollen can help to supplement some of these limitations in diagenetic/overlap of isotopic signatures. We found that vertical distribution of MOM was consistent with mangrove pollen, which could provide similar information for tracing mangrove ecosystems. Therefore, mangrove development was reconstructed and divided into three stages: flourishing, degradation and re-flourishing/re-degradation period. The significant degradation, found in the period of 1968–1998 and 1907–2007 in the Yingluo Bay and the Maowei Sea, respectively, corresponding to a rapid increase of reclamation area and seawall length, rather than climate change as recorded in the region.  相似文献   

18.
北部湾大风江与南流江河口红树林空间分布格局研究   总被引:1,自引:1,他引:0  
生长在潮间带的红树植物在河口植物群落构成、海岸防风消浪中具有重要价值。本文基于本地种桐花树胚胎浸泡下沉实验与北部湾南流江和大风江河口段水体盐度、沿线潮间带植物群落结构与地貌分析,探讨红树林在河口空间分布及影响因素。结果主要表明:南流江河口和大风江河口红树林自海向陆基本展现“红树林纯林(桐花树、秋茄、无瓣海桑种类混生)→红树植物与半红树植物(黄槿、苦朗等)混生→红树植物、半红树植物与非红树植物混生→红树植物镶嵌→稀疏红树林小苗”的分布格局,但大风江河口向陆界限主要以红树、红树幼苗及半红树混生为主。此外,红树被浸淹时长是控制河口红树空间分布结构的主要因素。潮水上溯时长影响红树向陆生长的极限位置,宜林滩地是红树发育生长的必要条件。  相似文献   

19.
桐花树作为红树林种群的先锋植物,其发育扩展和立地潮滩地貌变化的耦合过程是红树林生物动力地貌及生态修复研究关注的核心内容之一。本文基于2005?2019年高分辨率遥感影像、2019年10月至2020年10月的桐花树潮滩逐月沉沙量及其种群样方统计等资料,分析桐花树在南流江河口潮滩的变化特征及其与桐花树种群扩张的耦合机制。结果表明:(1)南流江河口堤外潮滩是桐花树种群的主要立地区,成年、幼年及胚胎桐花树呈带状依次出现在高潮滩、中潮滩及平均海平面附近。以平均海平面为基面,南流江河口高程为0.07 m的潮滩为桐花树一年生幼苗生长极限位置;(2)南流江河口桐花树自西北向东南快速向海扩张的格局与潮滩向海淤积前展维持一致,潮滩滩位升高成为宜林滩地是桐花树向海扩张的基础;(3)桐花树种群的消浪作用减缓水动力强度,促进泥沙在潮滩沉积,由此加速潮滩发育;低潮滩淤涨为中潮滩、高潮滩,为桐花树种群扩张提供立地条件,促进种群发育扩张。  相似文献   

20.
Extensive artificial waterways have replaced natural wetlands and created new estuarine habitats on the southern Queensland coast, Australia. Economically important fish species found in adjacent natural wetlands of mangrove, saltmarsh and seagrass also occur in the artificial waterways. Stable isotope analyses (δ13C, δ15N) were used to test whether the relative importance of basal sources of energy varied for foodwebs found in artificial (canals and tidal lakes) and natural waterways. None of the fish species differed in their isotope values between artificial waterways. In contrast, isotopic signatures of snub-nosed garfish (Arrhamphus sclerolepis; Hemiramphidae) varied greatly between natural and artificial waterways, having highly enriched δ13C values (−10.5‰) in natural wetlands, demonstrating reliance on seagrass (−11.4‰), and significantly less enriched values (−19.0‰) in artificial waterways, consistent with either local algal sources (−19.8 to −20.4‰) or a mixture of seagrass and other less enriched autotrophs from adjacent natural wetlands. Isotopic signatures of sand whiting (Sillago ciliata; Sillaginidae) were also significantly more enriched in natural (−18.2‰) than artificial (−21.0‰) habitats, but means were not far enough apart to distinguish between different sources of nutrition. δ13C values of yellowfin bream (Acanthopagrus australis; Sparidae) did not differ between artificial and natural habitats (about −20‰ in both). δ15N values of fish varied among habitats only for A. sclerolepis, which in artificial waterways had values enriched by 2‰ over those in natural waterways. This was consistent with a shift from seagrass (relatively depleted δ15N) as a source in natural habitat to algal sources (relatively enriched δ15N) in artificial habitats. This study provides some of the first evidence that at least some fish species rely on different autotrophs in artificial waterways than in adjacent natural wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号