首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Dimethylsulfide(DMS) is generally thought to be lost from the surface oceans by evasion into the atmosphere as well as consumption by microbe.However,photochemical process might be important in the removal of DMS in the oceanic photic zone.A kinetic investigation into the photochemical oxidation of DMS in seawater was performed.The photo-oxidation rates of DMS were influenced by various factors including the medium,dissolved oxygen,photosensitizers,and heavy metal ions.The photo-oxidation rates of DMS were higher in seawater than in distilled water,presumably due to the effect of salinity existing in seawater.Three usual photosensitizers(humic acid,fulvic acid and anthroquinone),especially in the presence of oxygen,were able to enhance the photo-oxidation rate of DMS,with the fastest rate observed with anthroquinone.Photo-oxidation of DMS followed first order reaction kinetics with the rate constant ranging from 2.5×10-5 to 34.3×10-5 s-1.Quantitative analysis showed that approximately 32% of the photochemically removed DMS was converted to dimethylsulfoxide.One of the important findings was that the presence of Hg2 could markedly accelerate the photo-oxidation rate of DMS in seawater.The mechanism of mercuric catalysis for DMS photolysis was suggested according to the way of CTTM(charge transfer to metal) of DMS-Hg2 complex.  相似文献   

2.
MECHANISM OF URANIUM ADSORPTION ON AMIDOXIME RESIN   总被引:1,自引:0,他引:1  
The mechanism of uranium adsorption from seawater by polyacrylamidoxime resin is investigated by means of the experiments of adsorption isotherm and adsorption rate. The uranium uptake increases with the adsorption temperature and varies with the pH of seawater. Thermochemical and kinetic calculation show that the enthalpy change (△H) and the activation energy (E) of the uranium adsorption are 42.4 42.4 kJ mol-1 and 41.2 kJ mol-1 respectively, indicating that the uranium adsorption on the resin proceeds via a certain complex chemical reaction in which the amidoxime group in the resin chelates uranyl ions.  相似文献   

3.
西北太平洋多金属结核铂族元素地球化学特征   总被引:1,自引:0,他引:1  
Polymetallic nodules and cobalt (Co)-rich crusts are enriched in platinum-group elements (PGEs),especially platinum (Pt) and may be important sinks of PGEs.At present,little information is available on PGEs in polymetallic nodules,and their geochemical characteristics and the causes of PGEs enrichment are unclear.Here PGEs of polymetallic nodules from abyssal basin in the Marcus-Wake Seamount area of the Northwest Pacific Ocean are reported and compared with the published PGEs data of polymetallic nodules and Co-rich crusts in the Pacific.The total PGEs (ΣPGE) content of polymetallic nodules in study area is 258×10~(–9) in average,markedly higher than that of Clarion-Clipperton Zone (CCZ) nodules (ΣPGE=127×10~(–9)) and lower than that of Co-rich crusts in the Marcus-Wake Seamount (ΣPGE=653×10~(–9)),similar to that of Co-rich crusts in the South China Sea(ΣPGE=252×10~(–9)).The CI chondrite-normalized PGEs patterns in different regions of polymetallic nodules and cobalt-rich crusts are highly consistent,with all being characterized by positive Pt and negative Pd anomalies These results,together with those of previous studies,indicate that PGEs in polymetallic nodules and Co-rich crusts are mainly derived directly from seawater.Pt contents of polymetallic nodules from the study area are negatively correlated with water depth,and Pt/ΣPGE ratios in nodules there are also lower than those of the Corich crusts in the adjacent area,indicating that sedimentary water depth and oxygen fugacity of ambient seawater are the possible important controlling factors for Pt accumulation in crusts and nodules.  相似文献   

4.
Dissolved organic matter(DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter(COM; 10 kDa–0.22 μm) retentate, low molecular weight(LMW) DOM(10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM(CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmember(13.4% of the total) than in the seawater endmember(6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components(C1: 250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component(C3: 275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%–8.7%, 4.8%–12.6%, and 7.4%–14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C1+C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component(C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.  相似文献   

5.
The paper deals with the distribution of suspended particulated materials (SPM) in the Changjiang Estuary, the relation of salinity to particulated organic carbon and particulated organic nitrogen, and behaviour of SPM in mixing river-sea water. At the same time, the article shows that the SPM in Changjiang River emptying into the sea contains a large amount of organic matter. The relative concentrations of suspended particulate organic matter and living organic matter gradually increase seaward. In the estuarine environment, there is a linear relationship between log SPM and C/N ratio during the mixing of fresh water with seawater.  相似文献   

6.
The concentrations of dissolved chromium in seawater of the Bohai Gulf vary from trace to 1.6 μg /1 while those of particulate chromium from trace to 8.66 μg/1, indicating that the concentration of chromium in seawater of nearshore and estuary in the Bohai Gulf is higher than that of offshore, and reflecting the effects of estuarine and terrestrial pollutions. Observation data indicate that there is a positive correlation between particulate chromium and COD.The result shows that organic matter in seawater has a strong ability to combine chromium. When particulate chromium meets with seawater in estuary, it gradually settles down to sea-bottom sediments. Ratio of particulate chromium to total chromium in the Bohai Gulf yields a higher value, exceeding 90% in estuarine area, i.e. particulate chromium is a predominant form in seawater of the Bohai Gulf.  相似文献   

7.
An account is given of the thermodynamical characteristics of the adsorption of uranyl complex ions on hydrous titanium oxide (HTO) in NaCl-NaHCO3 solution and in seawater. Determined are the adsorption isotherms and the adsorption density in various pH. The contribution of each component to the adsorption density, the adsorption free energy ΔGads,t, the coulostatic energy ΔGcoul,t. and the cqemisorption potential energy Gchem. t are estimated. The average free energy ΔGads enthalpy change, ΔHads, and entropy change, ΔSads, of the adsorption in this system are -7.33 kcal/mol, 6.30 kcal/mol and 45.7 cal/mol K respectively. It is hereof concluded that the complex chemisorption process is spontaneous and thermonegativc.  相似文献   

8.
Study of colloidal phosphorus variation in estuary with salinity   总被引:1,自引:0,他引:1  
The variation of colloidal phosphorus with salinity in estuary was studied in this paper, which was compared with those of particle and truly dissolved phosphorus with the purpose of ˉnding out the similarities and di?erences between their behaviors in the estuary. Distribution patterns of phospho- rus in particle, colloidal and truly dissolved phase at di?erent salinities and their relationships with suspended particulate matter were also studied to understand the transformation and transporta- tion of colloidal phosphorus in estuarine area. The result showed that the concentrations of total colloidal phosphorus, organic colloidal phosphorus and inorganic colloidall phosphate all descended from river-end to sea-end, illustrating their terrigenous source. Ratios of organic to total colloidal phosphorus decreased with salinity's increment, indicating that organic phosphorus was in°uenced by scavenging process of colloid more signiˉcantly as compared with inorganic phosphate. Both of the phosphorus variation tendencies and the proportion between organic and inorganic phosphorus in colloidal phase was similar with that in truly dissolved phase while di?erent from that in particle phase.  相似文献   

9.
Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, which is characterized by high-density shellfish and seaweed aquaculture, the grain size, organic carbon(OC), total nitrogen(TN), carbon and nitrogen isotopic composition(δ13C and δ15N) of organic matter in the surface sediment were determined. The results showed that, in August, sedimentary OC and TN ranged from 0.17% to 0.76% and 0.04% to 0.14%, respectively. In November, OC and TN ranged from 0.23% to 0.87% and 0.05% to 0.14%, respectively. There was a significant positive correlation between OC and TN(R=0.98, P0.0001), indicating that OC and TN were homologous. In August, the δ13C and δ15N of organic matter varied from-23.06‰ to-21.59‰ and 5.10‰ to 6.31‰, respectively. In November, δ13C and δ15N ranged from-22.87‰ to-21.34‰ and 5.13‰ to 7.31‰, respectively. This study found that the major sources of sedimentary organic matter were marine shellfish biodeposition, seaweed farming, and soil organic matter. Using a three-end-member mixed model, we estimated that the dominant source of sedimentary organic matter was shellfish biodeposition, with an average contribution rate of 65.53% in August and 43.00% in November. Thus, shellfish farming had a significant influence on the coastal carbon cycle.  相似文献   

10.
Multi-biomarker indexes were analyzed for two piston cores from potential cold seep areas of the South China Sea off southwestern Taiwan. Total organic carbon(TOC) normalized terrestrial(n-alkanes) and marine(brassicasterol, dinosterol, alkenones and iso-GDGTs) biomarker contents and ratios(TMBR, 1/Pmar-aq, BIT) were used to evaluate the contributions of terrestrial and marine organic matter(TOM and MOM respectively) to the sedimentary organic matter, indicating that MOM dominated the organic sources in Core MD052911 and the sedimentary organic matter in Core ORI-_(86)0-22 was mainly derived from terrestrial inputs, and different morphologies were the likely reason for TOM percentage differences. BIT results suggested that river-transported terrestrial soil organic matter was not a major source of TOM of sedimentary organic matter around these settings.Diagnostic biomarkers for methane-oxidizing archaea(MOA) were only detected in one sample at 172 cm depth of Core ORI-_(86)0-22, with abnormally high iso-GDGTs content and Methane Index(MI) value(0.94). These results indicated high anaerobic oxidation of methane(AOM) activities at or around 172 cm in Core ORI-_(86)0-22.However in Core MD052911, MOA biomarkers were not detected and MI values were lower(0.19–0.38), indicated insignificant contributions of iso-GDGTs from methanotrophic archaea and the absence of significant AOM activities. Biomarker results thus indicated that the discontinuous upward methane seepage and insufficient methane flux could not induce high AOM activities in our sampling sites. In addition, the different patterns of TEX_(86) and U_(37)~(K′) temperature in two cores suggested that AOM activities affected TEX_(86)37 temperature estimates with lower values in Core ORI-_(86)0-22, but not significantly on TEX_(86) temperature estimates in Core MD052911.  相似文献   

11.
Mechanisms of pore water organic matter adsorption to montmorillonite   总被引:2,自引:0,他引:2  
The extent and mechanisms of adsorption of marine pore water organic matter to montmorillonite were studied in a series of batch and sequential adsorption experiments. Pore water natural organic matter (pNOM) and easily extracted natural organic matter (eNOM) were collected from Liberty Bay (Puget Sound, WA, USA) sediments. The pNOM and eNOM were each divided into two size fractions using a 1000 D ultrafilter. Batch adsorption isotherms were approximately linear, and the >1000 D fractions of both pNOM and eNOM had larger partition coefficients (Kd) than the <1000 D fractions. A two-component fit of the sequential adsorption data indicated that pNOM and eNOM contained a similar amount of NOM (30%) that was not surface reactive toward montmorillonite. After correcting the batch adsorption Kds for the non-reactive components, the Kds estimated by batch and sequential adsorption were identical (2.7 l/kg for >1000 D pNOM and eNOM, and 1.6 l/kg for <1000 D pNOM and eNOM). Mechanisms of adsorption were investigated by systematically changing conditions (pH, temperature and ionic composition) of >1000 D fractions during batch isotherm experiments. Adsorption of NOM was found to decrease with increased temperature, suggesting that hydrophobic effects were not the dominant adsorption mechanisms in this system. Ion exchange was also not an important adsorption mechanism because adsorption increased with ionic strength. The observed enhancement in adsorption with ionic strength indicated that van der Waals interactions were important in the adsorption of NOM. Ligand exchange was found to be a significant mechanism since the presence of SO42− in solution reduced the amount of NOM adsorbed. Ca2+ enhanced adsorption slightly more than Na+, suggesting that cation bridging was involved. The relative contributions of van der Waals interactions, ligand exchange and cation bridging were estimated to be approximately 60%, 35% and 5%, respectively, for adsorption of NOM in a CaCl2 solution.  相似文献   

12.
An interaction of dissolved natural organic matter (DNOM) with copper ions in the water column of the stratified Krka River estuary (Croatia) was studied. The experimental methodology was based on the differential pulse anodic stripping voltammetric (DPASV) determination of labile copper species by titrating the sample using increments of copper additions uniformly distributed on the logarithmic scale. A classical at-equilibrium approach (determination of copper complexing capacity, CuCC) and a kinetic approach (tracing of equilibrium reconstitution) of copper complexation were considered and compared. A model of discrete distribution of organic ligands forming inert copper complexes was applied. For both approaches, a home-written fitting program was used for the determination of apparent stability constants (Kiequ), total ligands concentration (LiT) and association/dissociation rate constants (ki1,ki- 1).A non-conservative behaviour of dissolved organic matter (DOC) and total copper concentration in a water column was registered. An enhanced biological activity at the freshwater–seawater interface (FSI) triggered an increase of total copper concentration and total ligand concentration in this water layer. The copper complexation in fresh water of Krka River was characterised by one type of binding ligands, while in most of the estuarine and marine samples two classes of ligands were identified. The distribution of apparent stability constants (log K1equ: 11.2–13.0, log K2equ:8.8–10.0) showed increasing trend towards higher salinities, indicating stronger copper complexation by autochthonous seawater organic matter.Copper complexation parameters (ligand concentrations and apparent stability constants) obtained by at-equilibrium model are in very good accordance with those of kinetic model. Calculated association rate constants (k11:6.1–20 × 103 (M s)− 1, k21: 1.3–6.3 × 103 (M s)− 1) indicate that copper complexation by DNOM takes place relatively slowly. The time needed to achieve a new pseudo-equilibrium induced by an increase of copper concentration (which is common for Krka River estuary during summer period due to the nautical traffic), is estimated to be from 2 to 4 h.It is found that in such oligotrophic environment (dissolved organic carbon content under 83 µMC, i.e. 1 mgCL− 1) an increase of the total copper concentration above 12 nM could enhance a free copper concentration exceeding the level considered as potentially toxic for microorganisms (10 pM).  相似文献   

13.
Benzyl butyl phthalate (BBP) is an endocrine-disrupting chemical, and its sorption behaviour on marine sediments was investigated. BBP sorption on the sediments was a rapid process, which could reach equilibrium in 6 h. The sorption equilibrium results could be well described by a linear isotherm. The BBP partition coefficient, Kd, varied from 7.16 to 12.54 L/g in approximately proportion to the organic content of the sediments. After H2O2 oxidation for removing the organic material from the sediments, the Kd values were reduced by more than 70%, but the organic normalised partition coefficient averaged 2165 L/g for the H2O2-treated sediments, which was more than three times of 598 L/g for the raw sediments. The sorption of BBP on the sediments increased with a decrease in temperature and an increase in salinity. A salting constant of 1.14 L/mol was obtained for BBP in artificial seawater. These research findings are of importance to an assessment of the fate and transport of BBP and other similar endocrine-disrupting chemicals (EDCs) in seawater–sediment systems.  相似文献   

14.
Vertical attenuation of light through the water column (Kd) is attributable to the optically active components of phytoplankton, suspended particulate material (SPM) and chromophoric dissolved organic matter (CDOM). Of these, CDOM is not routinely monitored and was the main focus of this study. Concentrations and spatio-temporal patterns of CDOM fluorescence were investigated between August 2004 and March 2006, to quantify the correlation coefficient between CDOM and salinity and to better characterise the contribution of CDOM to Kd. Sampling was conducted at a broad range of UK and Republic of Ireland locations; these included more than 15 estuaries, 30 coastal and 70 offshore sites in the southern North Sea, Irish Sea, Liverpool Bay, Western Approaches and the English Channel.An instrument package was used; a logger with multi-sensor array was deployed vertically through the water column and concurrent water samples were taken to determine salinity, CDOM fluorescence and SPM. Surface CDOM fluorescence values ranged between 0.05 and 16.80 S.Fl.U. (standardised fluorescence units). A strong, negative correlation coefficient of CDOM to salinity (r2 = 0.81) was found. CDOM absorption (aCDOMλ) was derived from fluorescence measurements and was in the range 0.02–2.2 m1 with mean 0.15 m1. These results were comparable with direct measurements of aCDOMλ in the same geographic regions, as published by other workers.Spatial differences in CDOM fluorescence were generally explicable by variation in salinity, in local conditions or catchment areas; e.g. CDOM at the freshwater end was 3.54–11.30 S.Fl.U., reflecting the variety of rivers sampled and their different catchments. Temporal changes in CDOM fluorescence were related to salinity. A significant and positive correlation was found between CDOM and Kd, and although CDOM was found to be less influential than SPM on Kd, it was still of significance particularly in coastal and offshore waters of lower turbidity.  相似文献   

15.
The dissociation constants (pK1 and pK2) for methionine have been measured in artificial seawater as a function of salinity (S = 5 to 35) and temperature (5 to 45 °C). The seawater pK2 values were lower than the values in NaCl at the same ionic strength while the pK1 values in seawater were lower only at S = 35. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been used to determine the formation of Mg2+ complexes and Pitzer interaction parameters for Mg2+ with methionine. The seawater model with the interaction parameters accounts for the differences between the value of pK1 and pK2 between NaCl and seawater. This study demonstrates that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

16.
The adsorption of Pb2+ and of Cd2+ ions from calcareous Krka river water of various salinities (3, 14, 20 and 38 psu) on calcite (CaCO3, Merck p.a.) was investigated. Simultaneous adsorption of Pb2+ and Cd2+ ions was studied as well. The results suggest that the two ions are adsorbed at different calcite surface sites; Pb2+ remained firmly bound to calcite at all salinities, whereas Cd2+ was firmly bound at low salinities and released at high salinities. Dissolved natural organic ligands at the freshwater-seawater interface (FSI; at 14 psu) promoted and below the FSI (at 20 psu) decreased the adsorption of Cd2+. The experiments were performed at metal concentrations of 8 × 10−8 mol l−1 and at natural pH values around pH 8. Adsorbed amounts of trace metal ions were determined in filtered samples by differential pulse anodic stripping voltammetry (DPASV) with a three-electrode system, after 24 h of equilibration with calcite. Several adsorption models were tested, such as Freundlich's, Langmuir's and Schindler-Stumm's surface coordination model. Adsorption isotherms belong to S-1 class of empirical adsorption isotherms. None gave reasonable values of adsorption constants. The fractional partitioning of adsorbent to the solid phase when normalized to the quantity of adsorbent present (Kd) declined as solid concentration increased. It was found that the surface charge is not responsible for the observed effect. Instead, aggregate size increased, which effected a loss in surface area. This is a reasonable explanation for the observed S-shaped adsorption isotherms curves.  相似文献   

17.
1. The adsorption action of basic zinc carbonate adsorbent on uranium in natural seawater can be expressed with the following formula of adsorption isotherm:C=k(U*)n = 8.51× 10-1(U*)0.49,where C is the concentration of uranium on adsorbent; U* is content of uranium in natural seawater employed.2. when the quantity of basic zinc carbonate adsorbent (T) is constant, with the increase of natural seawater quantity through the adsorption column (G), also increased are the adsorption content of uranium of the adsorbent (U), the concentration of uranium on the adsorbent (C) and the concentration of residual uranium (C0*) in natural seawater after adsorbing uranium, while the rate of recovery of uranium (R) is decreased. With the increase of (G) the coefficient of distribution (Kd) decreases to a certain value and then a little rises again.  相似文献   

18.
《Marine Chemistry》2007,103(1-2):103-111
Particle–water interactions of selected platinum group elements (PGE) have been studied as a function of pH (between 5 and 10), salinity, and concentrations of Cl and Ca2+. Rhodium(III), Pd(II) and Pt(IV) were added to water samples and sediment suspensions and, following a period of equilibration and subsequent phase separation, filtrates and HCl-digested filters were analysed by ICP-MS. PGE removal from the aqueous phase to the particulate phase appeared to proceed via both coagulation of organic/colloidal associations and adsorption to estuarine sediment particles. In river water, removal of Rh increased and Pt decreased with increasing pH, whereas Pd was not detected in the particulate phase throughout much of the pH range studied. In end-member estuarine water (salinity = 28), removal of Rh and Pt increased with increasing pH, but removal of Pd was relatively insensitive to pH. Conditional particulate-aqueous distribution coefficients, KDs (mL g 1), were on the order of a few hundred (Pd and Pt) to several thousand (Rh) along the estuarine gradient. Increasing salinity and Cl concentration were accompanied by an increase in KD for Rh and Pd, and a reduction in KD for Pt, while increasing Ca2+ concentration resulted in an increase in KD for all PGE. Experimental observations were qualitatively interpreted in terms of what is known about the aqueous speciation of PGE. Thus, Rh data were consistent with the adsorption of cationic species of the form: [RhCl6−x(H2O)x]x−3, where x = 0 to 6; although in river water complexation by additional (e.g. organic) ligands may have also occurred. Speciation of Pd was predicted to be dominated by organic complexes under all experimental conditions, consistent with its stabilisation in solution in freshwater and apparent salting out and/or coagulation in the presence of dissolved ions. The presence of hydroxychloride complexes of Pt(IV), whose ligand number (and negative charge) increases with increasing chlorinity, could explain most of the experimental observations for this element.  相似文献   

19.
A liquid-liquid partition, ligand exchange procedure involving the formation of copper(II) complexes with acetylacetone is presented for the determination of stability constants and concentrations of copper chelators in seawater. Acetylacetone competes with natural ligands for copper, and the equilibrium concentration of the copper acetylacetonate complex is used in speciation calculations. The concentration of the complex is calculated by partitioning a fraction of it into an organic phase and determining the total Cu concentration in that phase by back extracting with acid, and analyzing by flameless atomic absorption spectroscopy. The concentration of Cu acetylacetonate in seawater in equilibrium with the organic phase is calculated from the partition coefficient. The simple, thermodynamically well characterized procedure offers several advantages over previous techniques. Studies using organic free seawater and model ligands show good agreement between experimental and calculated conditional stability constants. Studies from seawater in Biscayne Bay, Florida, indicate two ligand types are present; type 1, K1 = 1.2 × 1012, CL1 = 5.1 × 10−9 M; type 2, K2 = 2.8 × 1010, CL2 = 1.1 × 10−7 M. Speciation is dominated by ligand type 1. Depth profiles of [Cu(II)]free/[Cu(II)]total measured with the procedure at ambient copper concentrations show an increase from < 5 × 10−5 at 50–60 m to > 1 × 10−3 at the surface at two stations off the Florida coast.  相似文献   

20.
-By the electroanalysis method combining the complexation titrating technique with the investigation of ip-Ea* characteristic curves, this paper measures apparent complexing capacities of trace heavy-metals in water samples from the Huanghe River Estuary. The results show that the order of apparent complexing capacities of trace heavy-metals in the samples isCu>Cd>Pb,and that apparent complexing capacities of near shore sample are higher than those far from shore. The effect of ultraviolet irradiation on the dissociation of organic ligands and the adsorption effect of cell walls (cells being treated with acid and seawater respectively) are investigated. The reduction (on electrodes) mechanism of species of trace heavy-metals in seawater is approached by ip-Ea* characteristic curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号