首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Global Ocean Data Assimilation Experiment (GODAE) requires the availability of a global analyzed SST field with high-resolution in space (at least 10 km) and time (at least 24 hours). The new generation SST products would be based on the merging of SSTs from various satellites data and in situ measurements. The merging of satellite infrared and microwave SST data is investigated in this paper. After pre-processing of the individual satellite data, objective analysis was applied to merge the SST data from NOAA AVHRR (National Oceanic and Atmospheric Administration, Advanced Very High Resolution Radiometer), GMS S-VISSR (Geostationary Meteorological Satellite, Stretched-Visible Infrared Spin Scan Radiometer), TRMM MI (Tropical Rainfall Measuring Mission, Microwave Imager: TMI) and VIRS (Visible and Infrared Scanner). The 0.05° daily cloud-free SST products were generated in three regions, viz., the Kuroshio region, the Asia-Pacific Region and the Pacific, during one-year period of October 1999 to September 2000. Comparisons of the merged SSTs with Japan Meteorological Agency (JMA) buoy SSTs show that, with considerable error sources from individual satellite data and merging procedure, an accuracy of 0.95 K is achieved. The results demonstrate the practicality and advantages of merging SST measurements from various satellite sensors.  相似文献   

2.
Monthly wavenumber spectra of sea surface temperatures (SST) have been estimated in two regions near the Kuroshio, in the recirculation and the Kuroshio Extension regions, using the merged SST product to determine the statistical parameter (spatial decorrelation scale) required for optimal interpolation of a high-resolution SST dataset. The two-dimensional wavelet transform was used for analysis. Estimates were made of daily mean and daily minimum SSTs. These do not significantly differ, which suggests that the same covariance matrix can be used for the daily mean and minimum in the merging procedure. The seasonality of wavenumber spectra is significant. There are also large differences between those in the recirculation region and in the Kuroshio Extension region. Therefore, it is recommended that the covariance matrix in the merging process for high-resolution SST dataset be defined as a function of time and space. Improvements of the merging methodology are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) is a five-channel radiometer with wavelength from 0.6 to 12 μm. Daily 0.125° sea surface temperature (SST) data from VIRS were first produced at the National Space Development Agency (NASDA) for comparison with SST from TRMM Microwave Imager (TMI). In order to obtain accurate high spatial resolution SST for the merging of SST from infrared and microwave measurements, new SST retrieval coefficients of the Multichannel SST (MCSST) algorithm were generated using the global matchups from VIRS brightness temperature (BT) and Global Telecommunications System (GTS) SST. Cloud detection was improved and striping noise was eliminated. One-year global VIRS level-1B data were reprocessed using the MCSST algorithm and the advanced cloud/noise treatments. The bias and standard deviation between VIRS split-window SST and in situ SST are 0.10°C and 0.63°C, and for triple-window SST, are 0.06°C and 0.48°C. The results indicate that the reprocessing algorithm is capable of retrieving high quality SST from VIRS data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In the present article, we introduce a high resolution sea surface temperature(SST) product generated daily by Korea Institute of Ocean Science and Technology(KIOST). The SST product is comprised of four sets of data including eight-hour and daily average SST data of 1 km resolution, and is based on the four infrared(IR) satellite SST data acquired by advanced very high resolution radiometer(AVHRR), Moderate Resolution Imaging Spectroradiometer(MODIS), Multifunctional Transport Satellites-2(MTSAT-2) Imager and Meteorological Imager(MI), two microwave radiometer SSTs acquired by Advanced Microwave Scanning Radiometer 2(AMSR2), and Wind SAT with in-situ temperature data. These input satellite and in-situ SST data are merged by using the optimal interpolation(OI) algorithm. The root-mean-square-errors(RMSEs) of satellite and in-situ data are used as a weighting value in the OI algorithm. As a pilot product, four SST data sets were generated daily from January to December 2013. In the comparison between the SSTs measured by moored buoys and the daily mean KIOST SSTs, the estimated RMSE was 0.71°C and the bias value was –0.08°C. The largest RMSE and bias were 0.86 and –0.26°C respectively, observed at a buoy site in the boundary region of warm and cold waters with increased physical variability in the Sea of Japan/East Sea. Other site near the coasts shows a lower RMSE value of 0.60°C than those at the open waters. To investigate the spatial distributions of SST, the Group for High Resolution Sea Surface Temperature(GHRSST) product was used in the comparison of temperature gradients, and it was shown that the KIOST SST product represents well the water mass structures around the Korean Peninsula. The KIOST SST product generated from both satellite and buoy data is expected to make substantial contribution to the Korea Operational Oceanographic System(KOOS) as an input parameter for data assimilation.  相似文献   

5.
SST Availabilities of Satellite Infrared and Microwave Measurements   总被引:5,自引:1,他引:5  
To investigate the feasibility and methodology of new generation sea surface temperature (SST) maps that combine various satellite measurements, we have quantitatively evaluated SST availabilities of NOAA AVHRR (National Oceanic and Atmospheric Administration, Advanced Very High Resolution Radiometer), GMS S-VISSR (Geostationary Meteorological Satellite, Stretched-Visible Infrared Spin Scan Radiometer) and TRMM MI (Tropical Rainfall Measuring Mission, Microwave Imager: TMI), during the one-year period from October 1999 to September 2000. The advantage of satellite microwave SST measurements is the ability to penetrate the clouds that contaminate satellite infrared measurements. Daily SST availabilities were calculated in the overlapping coverage from 20°N to 38°N and 120°E to 160°E. The annual-mean SST availabilities of AVHRR, S-VISSR and TMI are 48%, 56% and 78%, respectively. There are large seasonal variations in the availabilities of infrared measurements. The latitude-time plots of one-degree zonal mean SST availabilities of S-VISSR and TMI in the region from 38°S to 38°N and 80°E to 160°W show significant zonal variations, which are influenced by the atmospheric circulation such as the Subtropical High and the Intertropical Convergence Zone. The SST availabilities of S-VISSR and TMI in the five selected regions have large regional variations, ranging from 35% to 74% and 62% to 88% for S-VISSR and TMI, respectively. The present statistical analyses of SST availabilities in the infrared and microwave measurements indicate that 1) a daily cloud-free high-spatial resolution may be achieved by merging various SST measurements since their deficiencies compensate each other, and 2) nevertheless, it is necessary to take account of the seasonal and regional variations of SST availabilities of different satellite sensors for the development of merging technology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
This study compares infrared and microwave measurements of sea surface temperature (SST) obtained by a single satellite. The simultaneous observation from the Global Imager (GLI: infrared) and the Advanced Microwave Scanning Radiometer (AMSR: microwave) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) provided an opportunity for the intercomparison. The GLI-and AMSR-derived SSTs from April to October 2003 are analyzed with other ancillary data including surface wind speed and water vapor retrieved by AMSR and SeaWinds on ADEOS-II. We found no measurable bias (defined as GLI minus AMSR), while the standard deviation of difference is less than 1°C. In low water vapor conditions, the GLI SST has a positive bias less than 0.2°C, and in high water vapor conditions, it has a negative (positive) bias during the daytime (nighttime). The low spatial resolution of AMSR is another factor underlying the geographical distribution of the differences. The cloud detection problem in the GLI algorithm also affects the difference. The large differences in high-latitude region during the nighttime might be due to the GLI cloud-detection algorithm. AMSR SST has a negative bias during the daytime with low wind speed (less than 7 ms−1), which might be related to the correction for surface wind effects in the AMSR SST algorithm.  相似文献   

7.
西北太平洋海表温度融合产品交叉比对分析   总被引:2,自引:0,他引:2  
奚萌  宋清涛  李文君  邹斌  林明森 《海洋学报》2017,39(12):136-152
海表温度产品是研究全球海洋大气系统的重要数据源,在海洋相关领域的研究和应用方面具有重要价值。以西北太平洋海域为研究区域,本文对2007-2014年的3个海表温度融合数据(AVHRR OISST,MISST和OSTIA)的产品特性与Argo浮标进行了真实性检验,并对融合产品进行了交叉比对分析。结果表明,3个融合产品在空间尺度上均能反映西北太平洋海域的海表温度变化趋势。融合数据与Argo浮标的平均偏差在±0.1℃之间,均方根误差小于0.9℃。融合数据与浮标数据存在明显的季节性变化,其中冬季融合数据与浮标数据的平均偏差和均方根误差较小。在高纬海域,融合产品和浮标存在正偏差。与另两个融合产品相比,OSTIA的数据质量与Argo浮标最为接近。3个融合产品在近岸和高纬海域差异较大,三者对海冰的标识和处理方式不同对融合结果也有影响。在2012年6月之前MISST和OSTIA的海表温度数据质量更为接近,但在此之后MISST存在系统误差。红外数据、微波数据和实测数据作为输入数据,是制作高时空分辨率高精度海表温度融合产品必不可少的要素。  相似文献   

8.
Real-time generation and distribution of the New Generation Sea Surface Temperature for Open Ocean (NGSST-O) product began in September 2003 as a demonstration operation of the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution Sea Surface Temperature Pilot Project. Satellite sea surface temperature (SST) observations from infrared radiometers (AVHRR, MODIS) and a microwave radiometer (AMSR-E) are objectively merged to generate the NGSST-O product, which is a quality-controlled, cloud-free, high-spatial-resolution (0.05° gridded), wide-coverage (13–63° N, 116–166° E), daily SST digital map. The NGSST-O demonstration operation system has been developed in cooperation with the Japanese Space Agency (JAXA) and has produced six years of continuous data without gaps. Comparison to in situ SSTs measured by drifting buoys indicates that the root mean-square error of NGSST-O has been kept at approximately 0.9°C.  相似文献   

9.
HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST),sea surface wind speed,columnar water vapor and columnar cloud liquid water detection.In this paper,the initial SST product of RM was validated with in-situ data of National Data of Buoy Center(NDBC) mooring and Argo buoy.The validation results indicate the accuracy of RM SST is better than 1.7 C.The comparison of RM SST and WindSat SST shows the former is warmer than the latter at high sea surface wind speed and the difference between these SSTs is depend on the sea surface wind speed.Then,the relationship between the errors of RM SST and sea surface wind speed was analyzed using NDBC mooring measurements.Based on the results of assessment and errors analysis,the suggestions of taking account of the affection of sea surface wind speed and using sea surface wind speed and direction derived from the microwave scatteromter aboard on HY-2 for SST product calibration were given for retrieval algorithm improvement.  相似文献   

10.
利用西北印度洋船测数据评估基于卫星的海表面温度   总被引:1,自引:1,他引:0  
本文描述了一次夏季在西北印度洋进行的调查船水文测量,用船测数据评估卫星海面表温度,并寻找影响海表面温度误差的主要因素。我们考虑了两种卫星数据,第一种是微波遥感产品——热带降雨测量任务微波成像仪TMI数据,另外一种是融合了微波,红外线,以及少部分观测数据的融合数据产品——可处理海表温度和海冰分析OSTIA数据。结果表明融合数据的日平均海表面温度的平均误差和均方根误差都比微波遥感小。这一结果证明了融合红外线遥感,微波遥感以及观测数据来提高海表面温度数据质量的必要性。此外,我们分析了海表面温度误差与各项水文参数之间的相关关系,包括风速,大气温度,想对湿度,大气压力,能见度。结果表明风速与TMI海表面温度误差的相关系数最大。而大气温度是影响OSTIA海表面温度误差最重要的因素;与此同时,想对湿度与海表面温度误差的相关系数也很高。  相似文献   

11.
本文将TMI(Tropical Rainfall Measuring Mission (TRMM)Microwave Imager)和AMSR-E(Advanced Microwave Scanning Radiometer for the Earth Observing System)卫星观测的全球海表温度与Argo浮标观测的近海表温度进行了比较。并检验了影响海温变化的因素,包括风速、水汽含量、液态云和地理位置。结果显示,TMI、AMSR-E海表温度与Argo近海表温度均明显相关。在低风速时,TMI、AMSR-E海表温度整体比Argo近海表温度高。在低风速时,TMI比AMSR-E海表温度更接近Argo近海表温度,但TMI海表温度在高纬可能没有经过良好校正。温度差异显示,在低水汽含量时,TMI和AMSR-E海表温度显示出暖的差异,代表TMI和AMSR-E海表温度在高纬均没有经过良好校正。黑潮延伸区的海表温度变化要比海潮区明显。春季在黑潮延伸区,卫星观测的海表温度与Argo近海表温度差异较小。在低风速时,TMI和AMSR-E海表温度均经过了良好校正,而TMI比AMSR-E效果更好。  相似文献   

12.
海表温度是表征海洋表层热力状况的重要海洋参数,日均全天候覆盖的海温观测数据可为服务台风监测及其他海洋灾害时空演变的精细化预报提供数据支撑。可见光红外扫描辐射计和中分辨率光谱成像仪反演的海温产品具有较高的空间分辨率,但是红外遥感反演的海温产品受到云、雾和霾的影响,在云下存在大面积、无规律的缺值;微波辐射计反演的海温产品空间分辨率低,但可穿透云层,实现全天候海温观测。本文基于风云三号B、C、D三颗极轨气象卫星红外和微波遥感仪器反演的海温资料,利用经验正交函数插值法(DINEOF)重构得到全球海表温度产品。与全球分析场日平均海温OISST数据进行比较可知:原始海温资料的均方根误差为0.59~0.70℃,DINEOF重构后海温资料均方根误差降至0.10~0.34℃;相关系数从0.33~0.48提升到0.78~0.98。多传感器重构海温数据空间分布上连续可信,能够监测不同季节的海温变化特征及暖池空间模态。风云三号气象卫星微波遥感的加入显著提升了重构海温的空间连续覆盖率和时间分辨率。  相似文献   

13.
利用南大洋漂流浮标数据评估AMSR-E SST   总被引:4,自引:4,他引:4  
利用AOML(Atlantic Oceanographical and Meteorological Laboratory)SVP漂流浮标的海表面温度数据,针对30°S以南的南大洋海域,对目前主要使用的微波遥感产品(AMSR-E,Ad-vanced Microwave Scanning Radiometer for the Earth Observing System)反演的SST进行了较为系统的评估。结果表明,AMSR-E SST比浮标数据偏冷,偏差为-0.01℃,标准差为0.70℃。夏季的偏差为0.004℃,标准差为0.64℃;冬季的偏差为-0.06℃,标准差为0.75℃,冬季的偏差和标准差较大。温差ΔT受流速影响,随着流速的增大而减小,且这种趋势在夏季更为显著。具备托伞结构的浮标与总体情况基本一致,而无托伞结构的浮标受流速的影响要大一些。同时,温差ΔT受水汽的影响,随着水汽的增加而减小,且这种影响在冬季更大一些。进一步对4个穿极和绕极浮标的追踪分析表明,温差ΔT受大洋海流系统的影响显著。在海流大的大西洋边界流和南极绕极流中,温差ΔT的不确定性要明显大于总体情况。  相似文献   

14.
The accuracy of sea surface temperatures (SSTs) derived from the Advanced Very High Resolution Radiometer (AVHRR)/NOAA-11 is examined by comparison with sea-truth SSTs obtained from ocean data buoys durings November 1988 through December 1989. We made a 122 point data set of buoy SSTs from the oceans around Japan and the corresponding brightness temperatures of channels 4 and 5 during cloud free periods. The satellite temperatures are corrected for atmospheric effects using the NOAA Multi-Channel SST (MCSST) and Cross Product SST (CPSST) algorithms. The two algorithms give similar results for our data set and result in biases of about –0.1°C with rms errors of about 0.6°C relative to buoy SSTs. It is found that MCSSTs and CPSSTs tend to be higher than SSTs from the buoy in the Japan Sea in summer. New coefficients for the MCSST equations suitable for our data set are determined and the resultant rms error is 0.49°C. If we eliminate the cluster of anomalous summer data in the Japan Sea, the rms error becomes 0.43°C.  相似文献   

15.
基于2018年4种红外辐射计(MODIS-Aqua,MODIS-Terra,VIIRS和AVHRR)的SST数据和3种微波辐射计(GMI,WindSat和AMSR2)的SST数据,分析了7种星载辐射计SST数据的全球覆盖情况,利用Argo数据对7种辐射计SST数据进行了真实性检验,并开展了微波产品、红外产品和Argo的交叉比对分析。结果表明:VIIRS SST数据的覆盖率、有效覆盖天数均高于MODIS-Aqua、MODIS-Terra和AVHRR;AMSR2微波辐射计SST数据的覆盖率和有效覆盖天数均高于GMI和WindSat;4种红外辐射计SST数据与Argo浮标数据的平均偏差在-0.27~0℃,均方根误差小于0.76℃,其中VIIRS数据质量最好;3种微波辐射计SST数据与Argo浮标数据的平均偏差在-0.04~0.22℃,均方根误差小于0.88℃,其中AMSR2绝对偏差、标准偏差和均方根误差均小于其他2个微波辐射计数据。AMSR2和VIIRS的SST数据交叉对比发现,AMSR2与APDRC Argo、VIIRS与APDRC Argo的平均偏差分别小于0.15和-0.20℃,标准偏差分别小于0.52和0.60℃;AMSR2与VIIRS平均偏差在-0.23~-0.10℃,标准偏差小于0.41℃,两者具有较高的一致性。  相似文献   

16.
Diurnal Sea Surface Temperature (SST) variations and the near-surface thermal structure of the tropical hot event (HE) have been investigated using advanced in-situ equatorial observations with hourly temporal resolution. The information on the HE area defined by the satellite cloud-free SSTs is used to sample the in-situ observations. The in-situ SSTs sampled for the HE conditions show that a maximum (minimum) SST has a histogram mode at 30.8°C (29.0°C), and frequently appears at 15:00 (07:00) local time. The amplitude of the diurnal SST variation (DSST) is defined by the difference between the maximum and minimum SSTs. The mean DSST during HEs is greater than 0.5°C, and has a maximum of about 0.75°C at the HE peak. The time series of mean DSST gradually increases (rapidly decreases) before (after) the peak. The satellite SST has a systematic positive bias against the corresponding daytime SST measured by the Triangle Trans-Ocean buoy Network. This bias is enhanced under conditions of large in-situ DSST. One-dimensional numerical model simulation suggests that the systematic bias is caused by the sharp vertical temperature gradient in the surface layer of HE. The near-surface thermal structure is generated by conditions of high insolation and low wind speed, which is the typical HE condition.  相似文献   

17.
Satellite-derived sea surface temperature (SST) is validated based on in-situ data from the East China Sea (ECS) and western North Pacific where most typhoons, which make landfall on the Korean peninsula, are formed and pass. While forecasting typhoons in terms of intensity and track, coupled ocean-typhoon models are significantly influenced by initial ocean condition. Potentially, satellite-derived SST is a very useful dataset to obtain initial ocean field because of its wide spatial coverage and high temporal resolution. In this study, satellite-derived SST from various sources such as Tropical Rainfall Measuring Mission Microwave Imager (TMI), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and New Generation Sea Surface Temperature for Open Ocean (NGSST-O) datasets from merged SSTs were compared with in-situ observation data using an indirect method which is using near surface temperature for validation of satellite derived SST. In-situ observation data included shipboard measurements such as Expendable Bathythermograph (XBT), and Conductivity, Temperature, Depth (CTD), and Argo buoy data. This study shows that in-situ data can be used for microwave derived SST validation because homogeneous features of seawater prevail at water depths of 2 m to 10 m under favorable wind conditions during the summer season in the East China Sea. As a result of validation, root-mean-square errors (RMSEs) are shown to be 0.55 °C between microwave SST and XBT/CTD data mostly under weak wind conditions, and 0.7 °C between XBT/CTD measurement and NGSST-O data. Microwave SST RMSE of 0.55 °C is a potentially valuable data source for general application. Change of SST before and after typhoon passing may imply strength of ocean mixing due to upwelling and turbulent mixing driven by the typhoon. Based on SST change, ocean mixing, driven by Typhoon Nari, was examined. Satellite-derived SST reveals a significant SST drop around the track immediately following the passing of Typhoon Nari in October, 2007.  相似文献   

18.
A new 0.1° gridded daily sea surface temperature(SST) data product is presented covering the years 2003–2015. It is created by fusing satellite SST data retrievals from four microwave(Wind Sat, AMSR-E, ASMR2 and HY-2 A RM)and two infrared(MODIS and AVHRR) radiometers(RMs) based on the optimum interpolation(OI) method. The effect of including HY-2 A RM SST data in the fusion product is studied, and the accuracy of the new SST product is determined by various comparisons with moored and drifting buoy measurements. An evaluation using global tropical moored buoy measurements shows that the root mean square error(RMSE) of the new gridded SST product is generally less than 0.5℃. A comparison with US National Data Buoy Center meteorological and oceanographic moored buoy observations shows that the RMSE of the new product is generally less than 0.8℃. A comparison with measurements from drifting buoys shows an RMSE of 0.52–0.69℃. Furthermore, the consistency of the new gridded SST dataset and the Remote Sensing Systems microwave-infrared SST dataset is evaluated, and the result shows that no significant inconsistency exists between these two products.  相似文献   

19.
3套不同的SST再分析数据与中国近海浮标观测的对比研究   总被引:1,自引:0,他引:1  
基于自然资源部浮标数据,通过分析均值差、均方根误差、相关系数和标准差偏差4个统计量,检验了2018年7月1日至8月6日全时段及该时段内3个台风(1808号台风“玛利亚”、1810号台风“安比”、1812号台风“云雀”)过境期间,3套海表面温度(Sea Surface Temperature,SST)再分析资料(OISST、OSTIA SST、RTG SST)在中国近海区域的可靠性。对比结果表明,在全时段内,3套SST再分析资料都能在一定程度上反映中国近海SST的基本状况,其中OSTIA SST资料同浮标实测SST数据的均值差为0.12℃、相关系数为0.94,均优于OISST资料(均值差为–0.85℃、相关系数为0.90)和RTG SST资料(均值差为–0.17℃、相关系数为0.86)。通过对比单个浮标数据发现,相较约80%的MF浮标实测SST数据,OSTIA SST资料都显著优于RTG SST资料和OISST资料,具有较高的可信度。在台风过境期间,较之RTG SST资料和OISST资料,OSTIA SST资料同大部分浮标实测数据的均值差绝对值及均方根误差更小、相关系数更大,表明在高海况条件下,OSTIA SST资料能更真实地反映中国近海SST的基本状况。  相似文献   

20.
A sea surface temperature (SST) retrieval algorithm for Global Imager (GLI) aboard the ADEOS-II satellite has been developed. The algorithm is used to produce the standard SST product in the Japan Aerospace Exploration Agency (JAXA). The algorithm for cloud screening is formed by combinations of various types of tests to detect cloud-contaminated pixels. The combination is changed according to the solar zenith angle, which enables us to detect clouds even in the sun glitter region in daytime. The parameters in the cloud-detection tests have been tuned using the GLI global observations. SST is calculated by the Multi-Channel SST (MCSST) technique from the detected clear pixels. Using drifting buoy measurements, match-up data are produced to derive the coefficients of the MCSST equations and to examine their performance. The bias and RMSE of the GLI SST are 0.03 K and 0.66 K for daytime and, −0.01 K and 0.70 K for nighttime, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号