首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, results of a three-dimensional finite element study addressing the effect of embedment ratio (L/D) of caisson foundations on the undrained bearing capacity under uniaxial and combined loadings are discussed. The undrained response of caisson foundations under uniaxial vertical (V), horizontal (H) and moment (M) loading are investigated. A series of equations are proposed to predict the ultimate vertical, moment and maximum horizontal bearing capacity factors. The undrained response of caisson foundations under combined V-H and V-M load space is studied and presented using failure envelopes generated with side-swipe method. The kinematic mechanism accompanying failure under uniaxial loading is addressed and presented for different embedment ratios. Predictions of the uniaxial bearing capacities are compared with other models and it is confirmed that the proposed equations appropriately describe the capacity of caisson foundations under uniaxial vertical, horizontal and moment loading in homogenous undrained soils. The results of this paper can be used as a basis for standard design codes of off-shore skirted shallow foundations which will be the first of its kind.  相似文献   

2.
A phenomenological model is proposed for the three-dimensional (3D) spectrum of temperature irregularities generated by internal waves in the atmosphere. This model develops a theory (Chunchuzov, 2002) based on the assumption that the field of the Lagrange displacements of the medium’s particles that are caused by a statistical ensemble of internal waves with randomly independent amplitudes and phases is stationary, homogeneous, axially symmetric in a horizontal plane, and Gaussian. To fit the model to measured spectra of fluctuations in the stratosphere and mesosphere, an additional assumption is introduced into the model that the degree of anisotropy of irregularities depends on their vertical size. An explicit expression is presented for the 3D spectrum. The model vertical spectrum follows a power law with an exponent of ?3. The horizontal spectrum has three asymptotically power portions. Two of these are characterized by an exponent of ?3, whereas an intermediate portion has an exponent of ?1 to ?3, depending on the rate at which the degree of anisotropy decreases as the vertical size of temperature irregularities increases. Simple asymptotic formulas are obtained for the horizontal spectrum. Within the range of a few decades, the model is in good agreement with the published results of measuring the spectra in the upper troposphere, stratosphere, and mesosphere.  相似文献   

3.
将浮游植物三维荧光光谱与主成分分析方法相结合,针对我国东海常见的12种藻建立了硅藻和甲藻的识别测定技术。根据Fisher判别分析结果,选用三维荧光光谱的第一主成分得分谱作为硅藻和甲藻的识别特征谱,建立了浮游植物荧光特征谱库。在此基础上,利用非负最小二乘法进行识别测定,其中单门类样品共有78个,识别正确率为95%,回收率≥81%;2个门类的混合样品共有18个,识别正确率为83%,回收率≥80%。  相似文献   

4.
A well resolved and highly accurate direct numerical simulation (DNS) solver has been developed to understand the implication of hydrodynamics to sediment transport. In the first part of the study we focus on steady flow over two-dimensional and three-dimensional ripples at two Reynolds numbers Reτ = 180 and 400 (defined by channel half-height and wall-friction velocity) in a channel geometry. The DNS scheme is based on a fourth-order vertical velocity and second-order vertical vorticity formulation, which resolves the difficulties in pressure boundary condition encountered when solving the Navier–Stokes equations. The complex boundary introduced due to the ripples has been imposed in the Cartesian domain using an elegant immersed boundary method. Detailed hydrodynamic analysis has revealed turbulence statistics (in particular, the higher order) and henceforth, the flow structures are sensitive — whether the ripples are two-dimensional or three-dimensional. The importance of fluctuating component of the bottom stress in addition to its mean component; and its significance to sediment transport and ripple migration speed have been investigated.  相似文献   

5.
A new class of phytoplankton models with a mechanistic basis has been presented in a companion paper (Baklouti, M., Diaz, F., Pinazo, C., Faure, V., Queguiner, B., 2006. Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems. Progress in Oceanography). It is the default class of models implemented in our new numerical tool Eco3M, which is dedicated to Ecological, Mechanistic and Modular Modelling. A brief overview of its main features is given in Section 2 of the present paper. In the next sections, a particular phytoplankton model among the aforementioned class has been tested with special emphasis on the mechanistic photosynthesis component relating the photosynthetic rate to the proportion of open photosystems II. The present study encompasses several essential steps that are inherent to any modelling, including model reduction, model sensitivity analysis and comparison of model outputs with experiments. The global sensitivity analysis of the plankton model for one-at-a-time parameter perturbations revealed a restricted set of parameters having major influence on the model outputs. Sensitivity tests involving simultaneous parameter perturbations within the range actually encountered in the literature provided a confidence interval for the outputs. Chemostat experiments performed on nitrate-limited diatoms grown under low (LL) and high-light (HL) conditions have been used for comparison with model outputs. The good fit between measured data and model outputs using the same parameter values in both the LL and HL cases demonstrates the ability of our model to represent the main features of phytoplankton dynamics including photoacclimation. Finally, Eco3M is ultimately intended to include explicit bacterial and zooplankton compartments, as well as to be coupled with ocean circulation models, but the intrinsic behavior of the phytoplankton model has been investigated first, independently of physical forcing.  相似文献   

6.
An important aspect of deepwater well integrity assurance is conductor fatigue analysis under environmental loads acting on the riser system during drilling operation. Fatigue damage arises from stress changes in a structure due to cyclic loading. In practice, the lateral cyclic soil response is typically modelled using Winkler py springs. An appropriate soil model for conductor–soil interaction analysis is the one based on which the absolute magnitudes of stresses and their changes can accurately be predicted for well integrity evaluation. The API recommendations for py curves, which are often used for conductor–soil interaction analysis, have originally been developed for piled foundation and are inappropriate for well fatigue analysis. To that end, an extensive study involving four series of centrifuge model tests and FE numerical analyses was conducted to fundamentally study conductor–soil interaction under a wide spectrum of loading conditions. The tests simulated conductor installations in normally to over consolidated clays, and medium-dense clean sands. Soil models were developed specifically for conductor fatigue analysis for each of the soil types. The test results and soil models are presented in two papers. The first paper, Part I, presents an overview of the study and first series tests in normally to lightly over-consolidated kaolin clay and discusses the observations made with regards to monotonic and cyclic soil resistances and their relationship to conductor fatigue modelling. The second paper, Part II, presents centrifuge test results in normally to lightly over-consolidated Golf of Mexico (GoM) clay, over-consolidated natural clay and medium-dense clean sands along with the respective soil models developed for conductor fatigue damage prediction. Overall, the accuracy of fatigue life predictions using these novel soil models is very high – generally within about a few percentage of the measured values.  相似文献   

7.
《Ocean Modelling》2002,4(2):173-205
A three-dimensional hydrostatic model is presented that combines a generalised vertical co-ordinate system with an efficient implicit solution technique for the free surface. The model is capable of maintaining high resolution in the surface and/or bottom boundary layers as well as dealing with steep topography. Horizontal diffusion is calculated using the Smagorinsky formulation and a kε turbulence model is used in the vertical. In addition the model uses higher-order advection routines. An important aspect in three-dimensional models is the choice of vertical discretisation. If one is mostly interested in problems which are governed by boundary layer flows, a terrain following or sigma co-ordinate system seems attractive. This paper focuses on the development of a generalised sigma-type grid in a three-dimensional hydrostatic model. The generalised grid offers a wide range of possibilities including grid refinement toward the bed or surface, a mixed layer transformation, and a constant layer transformation where the lowermost or uppermost grid cells can be specified to have a constant height above the bed or below the surface. A number of tests are presented which show that the model is capable of simulating both shallow nearshore, estuarine flows as well as large-scale geophysical flows. These include an extreme flooding event in the shallow North Sea and the Odden ice tongue formation in the Greenland Sea.  相似文献   

8.
In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.  相似文献   

9.
史磊  宋毅宁  秦宏 《海洋科学》2021,45(4):40-50
自20世纪80年代以来,我国出台了众多海洋捕捞相关政策,厘清这些政策变迁规律对海洋捕捞业的健康发展具有重要意义。本文对1986年以来我国海洋捕捞业的政策文本展开量化分析,构建政策时间维度、政策工具维度、政策价值维度三维政策文本分析框架,梳理当前捕捞业政策变迁和结构特征,并深入分析了捕捞业政策与现实的匹配性。研究发现,海洋捕捞业的部分政策目标之间存在一定的冲突和矛盾;政策工具体系全面,但不同政策工具数量分布不均衡;早期政策的经济价值取向突出,社会、生态价值相对不足,需要适时调整政策价值取向。未来应明确政策目标,推动海洋捕捞管理范式由投入控制向产出控制的转变;优化政策工具组合,引导渔民自觉养护海洋渔业资源,提高海洋捕捞业政策的有效性;整合政策价值取向,协调产业发展、资源养护和渔民利益的关系,推动海洋捕捞可持续发展。  相似文献   

10.
A procedure for estimating directional wave spectra from an array of wave probes based on the Maximum Entropy Method (MEM) is developed in the present paper. The MEM approach yields an angular spreading function at each frequency band consistent with the input cross-spectral density matrix. The method is evaluated using numerical simulations of directional sea states. The MEM is also used to analyze data obtained from the three-dimensional wave basin of the Hydraulics Laboratory, National Research Council of Canada. Finally, the MEM is compared with the Maximum Likelihood Method (MLM) and is shown to be a powerful tool for directional wave analysis.  相似文献   

11.
This study deals with the use of a multivariate analysis method in order to understand the functioning of the Bizerte lagoon ecosystem. A set of hydrobiological parameters was collected during 10 monthly campaigns in 2004. A variant of the EOF (Empirical Orthogonal Function) technique is used to examine hydrobiological variability modes in this lagoon. The permanent features characterising the lagoon are obtained by applying the EOF technique to data after removing the annual cycle. Two major modes were obtained. The first one shows a contrast between the northern sector of the lagoon, influenced by the Mediterranean Sea, and the southern one influenced by continental waters. This mode is mostly prominent for temperature and salinity. The second mode shows a contrast between shallow waters along the coastal zones and the deep central area of the lagoon. This contrast is more pronounced towards the southwestern edge of the lagoon, a region of important freshwater input from the Tinja channel, which drifts towards the downstream area of Menzel Bourguiba. This second mode may also correspond to northward water circulation under southerly wind blowing frequently in summer. The spatial and temporal variability in the lagoon is highlighted by applying the EOF to the raw data without removing the annual cycle. A weight series is obtained for each variable by extracting the corresponding data and then projecting them on the corresponding eigenvector. Using this technique, only one mode was found dominant with more than 52% of the total variance. It was also found that the north–south contrast of temperature, salinity and phosphorous and the coast-centre contrast of Chlorophyll a are enhanced in summer. Other variables such as ammonia and nitrate also show significant annual cycles but with local patterns.  相似文献   

12.
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C -unstructured non-orthogonal grid in the horizontal direction and z -level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohai Sea. The results are in good agreement both with the analytical solutions and measurement results.  相似文献   

13.
A three-dimensional numerical model is used to simulate sea level and velocity variations in the South China Sea for 1992–1995. The model is driven by daily wind and daily sea surface temperature fields derived from the NCEP/NCAR 40-year reanalysis project. The four-year model outputs are analyzed using time-domain Empirical Orthogonal Functions (EOF). Spatial and temporal variations of the first two modes from the simulation compare favorably with those derived from satellite altimetry. Mode 1, which is associated with a southern gyre, shows symmetric seasonal reversal. Mode 2, which contributes to a northern gyre, is responsible for the asymmetric seasonal and interannual variations. In winter, the southern and northern cyclonic gyres combine into a strong basin-wide cyclonic gyre. In summer, a cyclonic northern gyre and an anticyclonic southern gyre form a dipole with a jet leaving the coast of Vietnam. Interannual variations are particularly noticeable during El Niño. The winter gyre is generally weakened and confined to the southern basin, and the summer dipole structure does not form. Vertical motions weaken accordingly with the basin-wide circulation. Variations of the wind stress curl in the first two EOF modes coincide with those of the model-derived sea level and horizontal velocities. The mode 1 wind stress curl, significant in the southern basin, coincides with the reversal of the southern gyre. The mode 2 curl, large in the central basin, is responsible for the asymmetry in the winter and summer gyres. Lack of the mode 2 contribution during El Niño events weakens the circulation. The agreement indicates that changes in the wind stress curl contribute to the seasonal and interannual variations in the South China Sea.  相似文献   

14.
During the summer of 2008, the third CHINARE Arctic Expedition was carried out on board of Xuelong Icebreaker in the central Chukchi Sea. A submersible mooring system was deployed and recovered at Station CN-01 (71°40.024′N, 167°58.910′W) with 33 days of the current profile records, and continuous observation of temperature and salinity data were collected. This mooring station locates in the blank of similar observation area and it is the first time for our Chinese to finish this kind of long-termmooring work in this area. Thismooring systemfinished integrated hydrological observationswith long-termcontinuous record of the whole profile velocity for the first time. Based on time series analysis of temperature, salinity, velocity and flow direction, we get the following main results. (1) During the observation period, the mean surface current velocity is 70.2 cm/s eastward, and velocity reaches itsmaximumin average at 3mlevelwithmagnitude 90.0 cm/s, direction 206°. (2) In 9-30mlayers, the semidiurnal period variationis themost obvious, the flow direction is quite stable, and the flow is synchronous and consistent vertically. (3) Besides the semidiurnal period variation, the main variation in the upper layer is in 11-d period, with variations in period 5.5, 5.5, and 3.7 d, which reflect the influences of sea surface wind change and maintenance. (4) Near the bottom, the temperature change is correlated and synchronizedwith the conductivity.  相似文献   

15.
A new stiffened plate element is developed for the three-dimensional finite element analysis of ship structures. The plate element can accommodate any number of arbitrarily oriented stiffeners and obviates the use of mesh lines along the stiffeners. The new element provides a very economic global analysis of the complete ship structure with fewer elements and without any loss of accuracy. The global analysis of a rectangular box shaped vessel is carried out with the present element and compared with the general-purpose finite element software NISA. An Offshore Tug/Supply Vessel is analysed for crest at perpendiculars.  相似文献   

16.
Peixin Hu  G. X. Wu  Q. W. Ma 《Ocean Engineering》2002,29(14):1733-1750
In this paper the fully nonlinear potential model based on a finite element method is used to investigate the nonlinear wave motion around a moving circular cylinder. The results for the cylinder in transient motion are compared with the experimental data and a much better agreement than the linear theory is found. Further simulation for a circular cylinder in sinusoidal motion is made. It is found that when the ratio of the cylinder diameter D to the wavelength L is relatively small at a fixed motion amplitude the nonlinear components of the runup on the cylinder surface at the second- and third-harmonic frequencies become more important and this is confirmed by the experimental data. Results for the hydrodynamic force are also provided for a cylinder oscillating in a channel. It is noticed that when the frequency of the cylinder motion in a channel is between the first and the second natural frequencies of the symmetric mode, the time history has components not only at the frequency of the cylinder motion but also at the first natural frequency. The latter remains significant over the period that the simulation is made. This has important implications to model testing. If measurement is to be made at such a frequency it may take long time for the motion to become periodic at the frequency of the cylinder motion.  相似文献   

17.
An exact two dimensional hydrodynamic analysis based on the linear potential theory is introduced to study the free liquid sloshing characteristics of transverse oscillation modes in a non-deformable horizontal circular cylindrical baffled container which is filled to an arbitrary depth with an inviscid incompressible liquid. Three common baffle configurations are considered: a pair of internal rigid horizontal side baffles of arbitrary extension installed at the free liquid surface, and a surface-piercing or a bottom-mounted vertical rigid baffle of arbitrary extension positioned along the tank vertical axis of symmetry. The problem solution is obtained by the method of successive conformal coordinate transformations, leading to standard truncated matrix eigenvalue problems on simple (rectangular) regions which are then solved numerically for the resonance eigen-frequencies. The effects of liquid fill level, baffle arrangement and length upon the three lowest antisymmetric and symmetric sloshing frequencies and the associated hydrodynamic pressure mode shapes are examined. Also, convergence of the adopted approach with respect to the fill condition, and baffle type/extension is discussed. Limiting cases are considered and the validity of results is established in comparison with the data in the existing literature.  相似文献   

18.
悬跨海底电缆作为细长柔性结构,在静力平衡状态下具有一定的垂度,在水流作用下的涡激振动特性与海底管线和海洋立管等结构也有很大的不同,其振动模态受垂跨比影响很大。通过物理模型试验开展了不同垂跨比下悬跨海缆的涡激振动和疲劳损伤特性研究。试验模型按照水弹性相似准则设计,试验中测量了不同流速下海缆模型产生涡激振动时的应变历时数据,采用模态分析法获得了模型涡激振动时的振动模态和振幅。分析了不同流速下海缆模型的振动模态、应变和疲劳损伤的变化和分布特征。试验结果表明:垂跨比显著影响了海缆的涡激振动模态和应变幅值大小。在本试验流速范围内,对一定长度的悬跨海缆模型,当垂跨比较大时,随着流速的增大,模型涡激振动的主响应振动依次出现反对称1阶和对称1阶模态;当垂跨比较小时,模型涡激振动的主响应模态依次出现反对称1阶和对称2阶模态。当涡激振动主响应模态为反对称1阶时,疲劳损伤最大值达到0. 1~0.7。  相似文献   

19.
20.
The submerged 3D turbulent jet flow behavior around a pile on a rigid bed and on a scoured bed was studied experimentally and numerically. ADV was used to obtain the jet velocity distributions and Realizable k–ε turbulence model was used for the prediction of flow field around a pile. The jet flow area was three-dimensional and thus numerical model was a three-dimensional model. The numerical results were used to predict the velocity close to the pile and bed shear stress on the bed. In general, the results indicated that the flow field was also in agreement with the findings of previous experiments in literature and the related principles in the subject area. The experimental results demonstrated that Acoustic Doppler Velocimeter (ADV) measurements were almost identical with the Realizable kε turbulence model results for turbulence intensity I=10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号