首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
波能装置-浮式防波堤是将浮式防波堤与波能转换装置集成,兼具防波消浪和捕获波浪能的集成装置,能够有效降低单一功能波能转换装置的成本。研究者们提出了许多波能装置-浮式防波堤的结构型式,其中非对称式浮体结构相比于对称式浮体结构,在单向入射波的水动力性能方面拥有一定的优势。本文针对导桩锚泊的非对称式方箱-三角形挡浪板和方箱-垂直挡浪板两种浮体结构型式,通过数值模拟的方式,对比分析其水动力特性和波能俘获特性。数值模型基于黏性流体理论,以Navier-Stokes方程为控制方程,并采用VOF方法和浸没边界法求解自由面边界和流固耦合作用,探究不同入射波周期、水深和浮体排水条件下集成装置水动力性能(消波特性、能量耗散特性和波能俘获特性)变化趋势。结果表明,在近岸波浪条件下(5~8 s),垂直挡板型式集成装置适用于较小周期波浪(5~6 s),而三角挡板型式集成装置适用于较大周期波浪(6~7.5 s)。随着水深增大,波能俘获比总体上呈现缓慢增长的趋势。在主浮体吃水相同的情况下(排水量不同),两种结构的透射系数基本一致;而在排水量相同(主浮体吃水不同)的情况下,垂直挡板结构型式的防波效果更好,三角挡板结构型...  相似文献   

2.
针对波浪能转换装置(WEC)研究重点主要集中在能量捕获效率方面,而忽略其附带的消波功能的问题。基于Open FOAM程序,建立垂荡浮子式波浪能发电装置与桩式约束的浮式防波堤的集成系统(OBC-FB)。主要研究WEC中的重要组件动力输出系统(PTO)对集成系统波能捕获效率及消波性能的影响。分析流体黏性影响下线性PTO系统的最优PTO阻尼特性。开发非线性电磁阻尼模型与线性PTO系统性能进行比较。结果显示,考虑黏性影响下线性的最优PTO阻尼系数略大于无黏的理论值;适当增大PTO阻尼系数可以获得更大的波能捕获宽度比(CWR),从而可以保证装置单位特征尺寸的波能转换效率更高,同时可以在更宽波况范围保证消波性能;相较于线性PTO阻尼系统,非线性电磁PTO阻尼系统可以更好地兼顾波能捕获效率和消波性能。因此,在OBC-FB集成系统的优化设计中,PTO阻尼系统是一个重要的优化参数。  相似文献   

3.
点吸收式波浪能转换系统是最有效的波浪能利用装置之一,为提高能量利用性能该装置中的能量输出系统(Power Take-Off,简称为PTO)常设计有非线性环节。本文考虑了PTO中的非线性阻尼和非线性刚度等因素,对点吸收式波浪能转换装置的动力学进行了研究。根据流体动力学软件获取了浮体在波浪作用下的水动力参数,建立了PTO中包含中非线性阻尼和非线性刚度的动力学方程,采用Runge-Kutta法对其时域响应进行了求解,并分析了波幅和不同非线性刚度系数对能量俘获宽度的影响,研究表明选择合理的立方刚度非线性系数可以增加能量俘获宽度,提高能量利用率。  相似文献   

4.
波浪作用下方箱-水平板浮式防波堤时域水动力分析   总被引:1,自引:0,他引:1  
在线性化势流理论范围内求解方箱-水平板浮式防波堤的波浪绕射和辐射问题,从时域角度分析了浮式防波堤的水动力特性.采用格林函数法将速度势定解问题的控制微分方程变换成边界上的积分方程进行数值求解,浮式防波堤的运动方程采用四阶Runge-Kutta方法求解.对不同层数水平板的浮式防波堤的波浪透射系数、运动响应和锚链受力进行了计算分析,结果表明方箱相对宽度对方箱-水平板浮式防波堤的波浪透射作用有重要的影响,透射系数随着方箱相对宽度的增加而减小.对于方箱加二层水平板的浮式防波堤,在本研究的计算条件下,当方箱相对宽度从0.110增加至0.295时,透射系数从0.88减小至0.30.水平板有利于增加浮式防波堤对波浪的衰减作用,但随着水平板层数从0增加至2,这种波浪衰减作用增加的程度趋弱.方箱-水平板的浮式防波堤的运动量小于单一方箱防波堤的运动量.与此对应,方箱-水平板防波堤的锚链受力小于单一方箱防波堤的锚链受力.  相似文献   

5.
随着我国海洋开发向深远海方向发展,各类海洋装备长时间工作于深远海域,能源供给极不方便,迫切需要一种便捷的能源供给方式。针对上述需求,提出了一种可内置于海洋浮式装备的波浪能转换装置,以海洋浮式装备为载体,依靠载体在波浪作用下的垂荡运动获取波浪能,由于惯性波浪能转换装置的振子在弹簧的作用下产生振动,驱动动力输出(PTO)系统做功,将波浪能转换为电能。基于流体力学基本原理, 建立了浮体与波浪能装置的耦合运动学模型和能量转换数学模型,分析不同参数对 RAO 和 CWR 的影响。通过优化分析,本文所提出的基于惯性原理的双共振波浪能转换装置能量转换效率最高可达 45%以上,可有效地应用于海洋浮式装备,具有可观的应用前景。  相似文献   

6.
波浪能发电装置的波能转换通常分为两级能量转换:第一级能量转换是波浪作用下波浪能装置部件发生相对运动驱动PTO做功捕获波浪能;第二级能量转换为将捕获的波浪能转换为电能。其中一级波浪能转换系统的优化设计是提高波浪能装置能量转换效率的重要手段和关键技术。波浪作用下波浪能装置的运动与PTO做功运动相互耦合和影响,本文通过对不同波浪要素环境下、不同PTO阻尼下波浪能装置的频域运动模拟,以迎波宽度比为尺度对波浪能装置的一级能量转换系统进行优化设计,获得波浪能装置的最优做功阻尼,为实型装置负载加载设计提供设计依据,提高波浪能装置能量转化效率。鹰式一号波浪能装置的实海况运动证明,通过对一级能量转换系统的优化设计,能够有效提高装置的发电效率和提高装置对波浪响应频带宽度。  相似文献   

7.
主动共振浮力摆式波浪能发电装置通过调节内部配重位置实现共振发电。本文以基于机械式动力输出系统(Power Take-off, PTO) 的主动共振浮力摆式波浪能发电装置为研究对象,构建波-电时域动力学模型并验证模型可行性, 该模型的非线性特征主要体现在正弦函数形式的静水回复力矩及止动力矩中。进一步, 研究自振周期同不规则波能量周期一致的共振状态下,不同负载形式及取值大小对装置时域响应曲线、时均功率和效率的影响。研究结果表明: 不同负载设置对俘获宽度比的影响大于PTO 传动效率。阻性负载值过大或过小均会削弱俘获宽度比, 使有功时均值和发电效率下降, 共振状态下, 负载的感性或容性成分会使发电机产生大量无功, 且无功有正有负, 感性或容性成分能有效削弱俘获宽度比、有功时均值和发电效率。  相似文献   

8.
王强  刘睿  梁丙臣 《海岸工程》2022,41(2):95-104
本文提出了一种倾斜挡浪板式桩基透空型防波堤,通过物理模型试验对规则波作用下防波堤的消浪性能进行了研究。试验中观测了桩基透空型防波堤迎浪侧和背浪侧波面的变化过程,探讨了不同入射波浪条件下防波堤挡浪板的开孔率ε和布置形式B对其消浪性能的影响,分析了防波堤的反射系数Kr、透射系数Kt以及波能耗散系数Kd随着相对波高H/D和相对堤宽W/L的变化关系,并从波浪能量分布的角度分析此种防波堤的消浪机理。研究结果表明,单层挡浪板的开孔率自30%降低至10%,平均透射系数可减小约24.3%,平均耗散系数可增长约12.8%;双层挡浪板防波堤的反射系数取决于前排挡浪板的开孔率,透射系数取决于挡浪板组合中的最小开孔率。  相似文献   

9.
对实际工程中的浮力摆式波浪能发电装置进行水动力学研究和优化设计,得到提升波浪能发电能力的方法。首先建立波浪能水动力性能的评估体系,其核心是估算浮力摆波浪能发电装置俘获效率,其中波浪输运能量根据实际海况条件,利用随机波浪理论进行估算,浮力摆俘获能量估算则根据水动力学模型时域计算结果;然后依据建立的水动力性能评估体系,以浮力摆摆板宽度和后端负载为变量进行优化设计,总结了提高波浪能俘获能力的方法,即增大浮力摆宽度,并相应提高匹配负载;最后分析了两套浮力摆的交互作用,计算结果表明,如果将两套设备俘获能量通入同一组蓄能装置中,输入能量更加平稳,即利用浮力摆俘获波浪能的相位差,可以显著提升波浪能发电装置的发电能力。  相似文献   

10.
基于成本共享理念的波浪能发电装置(WEC)的开发与设计为降低建设成本提供了新的研究思路,应用计算流体力学方法对在透空箱式防波堤前附加垂荡浮子的集成装置进行数值模拟研究,主要研究了流体黏性和非线性PTO系统以及浮子形状对此类集成装置能量转换效率的影响。结果表明,此类集成装置可以获得较高的波能捕获宽度比(CWR),最高可达0.7,可以较好地利用反射波波能。共振区间上受黏性影响较大,相比于线性无黏理论解,CWR下降明显;实现了2种非线性PTO系统的模拟,有待于进一步的优化未获得更高的CWR值;浮子形状优化效果明显,采用圆底形浮子受黏性影响更小,可以获得更大的CWR值。此种集成模型的模拟和研究可以为新型防波堤设计和现有防波堤的改造提供思路和参考。  相似文献   

11.
The present study proposed a floating multi-body wave energy converter composed of a floating central platform, multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter's physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.  相似文献   

12.
The double-body heave wave energy converter(WEC) is one of the most conducive devices to absorb the wave energy from relative motion while the law of which is not well understood. This paper makes an in-depth study on this wave energy converter, by means of the combination of theoretical analysis and physical model experiment. The hydrodynamic characteristics and energy capture of the double-buoy under constant and linear Power Take-Off(PTO) damping are investigated. Influences of absolute mass and mass ratio are discussed in the theoretical model.Relative displacement amplitude and average power output are tested in the experiment to analyze the effect of the wave period and outer buoy's mass, while the capture width ratio(CWR) is also calculated. Results show that the wave period and mass of the buoys have a significant effect on the converter. Different forms of PTO damping have no influence on the optimal wave period and mass ratio of this device. It is recommended to select the double-buoy converter with a mass ratio of 0.80 and to place it in an area with the frequent wave period close to the natural period of the outer buoy to achieve the optimal energy capture.  相似文献   

13.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

14.
Raft-type wave energy converter (WEC) is a multi-mode wave energy conversion device, using the relative pitch motion to drive its hydraulic power take-off (PTO) units for capturing energy from the ocean waves. The hydraulic PTO unit as its energy conversion module plays a significant role in storing large qualities of energy and making the output power smooth. However, most of the previous investigations on the raft-type WECs treat the hydraulic PTO unit as a linear PTO unit and do not consider the dynamics of the hydraulic circuit and components in their investigations. This paper is related to a two-raft-type WEC consisting of two hinged rafts and a hydraulic PTO unit. The aim of this paper is to make an understanding of the dynamics of the hydraulic PTO unit and how these affect the performance of the two-raft-type WEC. Therefore, a combined hydrodynamic and hydraulic PTO unit model is proposed to investigate and optimize the performance of the two-raft-type WEC; and based on the simulation of the combined model, the relationships between the optimal power capture ability, the optimal magnitude of the hydraulic PTO force and the wave states are numerically revealed. Results show that an approximately square wave type hydraulic PTO force is produced by the hydraulic PTO unit, which causes the performance of the two-raft-type WEC not to be sinusoidal and the energy capturing manner different from that of the device using a linear PTO unit; moreover, there is an optimal magnitude of the hydraulic PTO force for obtaining an optimal power capture ability, which can be achieved by adjusting the parameters of the hydraulic PTO unit; in regular waves, the optimal power capture ability as well as the optimal magnitude of the hydraulic PTO force normalized by the wave height presents little relationship with the wave height, mainly depends on the wave period; in irregular waves, the trends of the optimal power capture ability and the normalized optimal magnitude of the hydraulic PTO force against the peak wave periods at different significant wave heights are generally identical and show a good correlation. All means that the hydraulic PTO unit of the two-raft-type WEC can be tuned to the wave states, and these would provide a valuable guidance for the optimal design of its hydraulic PTO unit.  相似文献   

15.
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter , which is different from linear converters characteristics of sinusoidal response in regular waves.  相似文献   

16.
Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in model testing of small scale wave energy converters (WECs). This type of PTO simulator is based on the principle that a conductive material moving in a magnetic field generates a braking force proportional to its velocity. A bottom-hinged pitching plate WEC model has been designed using an eddy current brake as a PTO simulator. A dedicated electric current source unit was developed to provide a controllable and reliable level of DC current intensity to feed the magnetic field generating coils. Using a real-time data acquisition and control, this unit can be used to impose non-linear damping PTO characteristic curves in several types of WEC models based on eddy current brakes. In the present case, this current source has been used to simulate a constant damping PTO on a small scale pitching WEC model that has been tested in the IST wave flume. Two different cases were considered: one corresponding to a surface piercing plate and another to a fully submerged plate. Experimental results are presented for plate motion and for non-dimensional capture width.  相似文献   

17.
A pile-supported OWC breakwater is a novel marine structure in which an oscillating water column (OWC) is integrated into a pile-supported breakwater, with a dual function: generating carbon-free energy and providing shelter for port activities by limiting wave transmission. In this work we investigate the hydrodynamics of this novel structure by means of an analytical model based on linear wave theory and matched eigenfunction expansion method. A local increase in the back-wall draft is adopted as an effective strategy to enhance wave power extraction and reduce wave transmission. The effects of chamber breadth, wall draft and air chamber volume on the hydrodynamic performance are examined in detail. We find that optimizing power take-off (PTO) damping for maximum power leads to both satisfactory power extraction and wave transmission, whereas optimizing for minimum wave transmission penalizes power extraction excessively; the former is, therefore, preferable. An appropriate large enough air chamber volume can enhance the bandwidth of high extraction efficiency through the air compressibility effect, with minimum repercussions for wave transmission. Meanwhile, the air chamber volume is found to be not large enough for the air compressibility effect to be relevant at engineering scales. Finally, a two-level practical optimization strategy on PTO damping is adopted. We prove that this strategy yields similar wave power extraction and wave transmission as the ideal optimization approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号