首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model is developed to predict the onset of local scour below offshore pipelines in steady currents and waves. The scour is assumed to start when the pressure gradient underneath the pipeline exceeds the floatation gradient of the sediments. In this model, the water flow field above the bed is determined by solving the two-dimensional (2-D) Reynolds-averaged Navier–Stokes equations with a k-ω turbulence closure. The seepage flow below the seabed is calculated by solving the Darcy's law (Laplace's equation) with known pressure distribution along the common boundaries of the flow domains-seabed. The numerical method used for both the turbulent flow around the pipeline and Darcy's flow in the seabed is a fractional finite element method. The average pressure gradient along the buried pipe surface is employed in the evaluation of onset condition with a calibration coefficient. The numerical model is validated against experimental data available in literature. A unified onset condition for steady currents and waves is proposed. Influences of flow parameters, including water depth, embedment depth, boundary layer thickness, Reynolds number (Re) and Keuleagan–Carpenter (KC) number, on the pressure drop coefficient over the pipeline are studied systematically.  相似文献   

2.
This paper presents the results of an experimental investigation on three-dimensional local scour below a rigid pipeline subjected to wave only and combined wave and current conditions. The tests were conducted in a conventional wave flume. The major emphasis of the investigation was on the scour propagation speed (free span expansion rate) along the pipeline after local scour was initiated at a controlled location. The effects of flow ratio (steady current velocity vs. combined waves/current velocity), flow incidence angle and pipeline initial embedment depth on free span expansion rate were investigated. It was observed that the scour along the pipeline propagated at a constant rate under wave only conditions. The scour propagation rate decreased with increasing embedment depth, however, increased with the increasing Keuglegan–Carpenter (KC) number. Under combined wave and current conditions, the effect of velocity ratio on scour propagation velocity along the pipeline was quantified. Empirical relationships between the scour propagation rate (Vh) and key parameters such as the KC number and embedment depth (e/D) were established based on the testing results.  相似文献   

3.
Estimation of pile group scour using adaptive neuro-fuzzy approach   总被引:4,自引:0,他引:4  
S.M. Bateni  D.-S. Jeng   《Ocean Engineering》2007,34(8-9):1344-1354
An accurate estimation of scour depth around piles is important for coastal and ocean engineers involved in the design of marine structures. Owing to the complexity of the problem, most conventional approaches are often unable to provide sufficiently accurate results. In this paper, an alternative attempt is made herein to develop adaptive neuro-fuzzy inference system (ANFIS) models for predicting scour depth as well as scour width for a group of piles supporting a pier. The ANFIS model provides the system identification and interpretability of the fuzzy models and the learning capability of neural networks in a single system. Two combinations of input data were used in the analyses to predict scour depth: the first input combination involves dimensional parameters such as wave height, wave period, and water depth, while the second combination contains nondimensional numbers including the Reynolds number, the Keulegan–Carpenter number, the Shields parameter and the sediment number. The test results show that ANFIS performs better than the existing empirical formulae. The ANFIS predicts scour depth better when it is trained with the original (dimensional) rather than the nondimensional data. The depth of scour was predicted more accurately than its width. A sensitivity analysis showed that scour depth is governed mainly by the Keulegan–Carpenter number, and wave height has a greater influence on scour depth than the other independent parameters.  相似文献   

4.
《Applied Ocean Research》2007,29(1-2):80-85
An approach by which the scour depth around a spherical body and the self-burial depth of such a body in random waves can be derived is presented. Here the formulas for scour and self-burial depths of a spherical body by Truelsen et al. [Truelsen C, Sumer BM, Fredsøe J. Scour around spherical bodies and self- burial. ASCE J Waterway Port Coast Ocean Eng 2005;131(1):1–13] for regular waves are used. They are combined with describing the waves as a stationary Gaussian narrow-band random process to derive the scour and self-burial depths in random waves.  相似文献   

5.
Experimental investigations are carried out on wave-induced pressures and uplift forces on a submarine pipeline (exposed, half buried and fully buried) in clayey soil of different consistency index both in regular and random waves. A study on scour under the pipeline resting on the clay bed is also carried out. It is found that the uplift force can be reduced by about 70%, if the pipeline is just buried in clay soil. The equilibrium scour depth below the pipeline is estimated as 42% of the pipe diameter for consistency index of 0.17 and is 34% of the pipe diameter for consistency index of 0.23. The results of the present investigations are compared with the results on sandy soil by Cheng and Liu (Appl. Ocean Res., 8(1986) 22) to acknowledge the benefit of cohesive soil in reducing the high pore pressure on buried pipeline compared to cohesionless soil.  相似文献   

6.
The results of a laboratory experimental program aimed at better understanding the scour around and burial of heavy cylindrical objects under oscillating flow on a sandy bed are described. This study was motivated by its application to the dynamics of isolated cobbles/mines on a sandy floor under nonlinear progressive waves, such as that occur in shallow coastal waters beyond the wave-breaking region. In the experiments, nonlinear progressive waves were generated in a long wave tank of rectangular cross-section with a bottom slope. Model mines (short cylinders) were placed on the sandy bottom and the temporal evolution of the bed profile and the velocity field in the near field of the object were observed. Experiments were conducted at relatively high Reynolds numbers for a range of flow conditions, which can be characterized by the Keulegan–Carpenter number and Shields parameter. Depending on the values of these parameters, four different scour regimes around the cylinder including periodical burial of cylinder under migrating sand ripples were observed; they were classified as: (i) no scour/burial, (ii) initial scour, (iii) expanded scour, and (iv) periodic burial cases. A scour regime diagram was developed and the demarcation criteria between different regimes were deduced. Semi-empirical formulae that permit estimation of the scour depth with time, the equilibrium maximum scour depth and length, and conditions necessary for the burial of the cylinder as a function of main external parameters are also proposed.  相似文献   

7.
采用计算流体力学—离散元耦合方法(CFD-DEM)模拟海底管道床面的冲刷过程。经过模型验证,该方法的计算结果与前人的研究具有较好的一致性,证明其可以应用于海底管道周围的冲刷模拟计算。冲刷初期的结果增强了目前对启动阶段粒子运动机理的理解,即管前后压力梯度造成的渗流作用导致粒子运动。对完整冲刷过程的模拟中,发现冲刷分为冲刷启动阶段、间隙冲刷阶段和尾迹冲刷阶段。间隙冲刷阶段管道下方粒子具有较大速度,冲刷坑快速向下方发展。进入尾迹冲刷阶段后,管道后方出现周期性脱落的涡旋,沙丘上的粒子速度更大。同时利用DEM更具直观性的独特优势,首次得到了14个典型位置处颗粒的运动轨迹和运动速度,对于理解冲刷过程中粒子的运动情况具有较大帮助。  相似文献   

8.
Scour of the Seabed Under A Pipeline in Oscillating Flow   总被引:3,自引:0,他引:3  
PU  Qun 《中国海洋工程》2001,(1):129-138
The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon, which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the fixed pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths for different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.  相似文献   

9.
针对杭州湾海底管道的实际工程状况,使用声学探测技术对海底管道冲刷自埋演化过程进行了现场检测,验证了海底管道从初始敷设状态依次发展为孔道冲刷、部分掩埋、尾流冲刷、尾流冲刷平衡、再次孔道冲刷和回淤自埋状态的演化过程.采用数值模拟方法分析了海底管道自埋演化过程中的典型状态,结果表明:管道下方的渗流和天然微孔隙是孔道冲刷起动的...  相似文献   

10.
This paper presents the results of an experimental investigation on three-dimensional scour below offshore pipelines subject to steady currents. The major emphasis of the investigation is on the scour propagation velocity along the pipeline after the scour initiation. Physical experiments were conducted to quantify the effects of various parameters on scour propagation velocity along the pipeline in a water flume of 4 m wide, 2.5 m deep and 50 m long. Local scour depths directly below the model pipeline were measured using specifically developed conductivity scour probes. Effects of various parameters such as pipeline embedment depth, incoming flow Shields parameter and flow incident angle (relative to the pipeline) on scour propagation velocity along the pipeline were investigated. It was found that scour propagation velocity generally increases with the increase of Shields parameter but decreases with the increase of the pipeline embedment depth. A general predictive formula for scour propagation velocity is proposed and validated against the experimental results.  相似文献   

11.
An approach by which the scour depth and scour width below a fixed pipeline and scour depth around a circular vertical pile in random waves can be derived is presented. Here, the scour depth formulas by Sumer and Fredsøe [ASCE J. Waterw., Port, Coastal Ocean Eng. 116 (1990) 307] for pipelines and Sumer et al. [ASCE J. Waterw., Port, Coastal Ocean Eng. 114 (1992) 599] for vertical piles as well as the scour width formula by Sumer and Fredsøe [The Mechanics of Scour in the Marine Environment, World Scientific, Singapore, 2002] for pipelines combined with describing the waves as a stationary Gaussian narrow-band random process are used to derive the cumulative distribution functions of the scour depths and width. Comparisons are made between the present approach and random wave scour data. Tentative approaches to related random wave scour cases are also suggested.  相似文献   

12.
采用当地海床的天然粉沙进行试验床面的设计,对海底管道在实际海床受到的极限波浪和最大水流作用进行试验,在管道上方铺设混凝土联锁排,对联锁排块体稳定性和其对管道防护的有效性进行研究。通过物理模型试验,研究了在极限波浪和最大水流作用下,管道在粉沙床面最大冲刷深度。通过不同水深中波流条件下研究了混凝土联锁排防护效果及其周围床面的冲刷变化,观测了联锁排的稳定性。试验结果表明:按半经验半理论简化公式得出的联锁排厚度能满足稳定性的要求,比水利部规范计算的联锁排厚度偏大的公式更加适合应用,试验期间混凝土联锁排的排面稳定,能有效保护管道,在该防护下管道没有冲刷,只在联锁排上下游与床面接触的来流段和尾端有冲刷,但该冲刷深度不影响联锁排整体的稳定性。  相似文献   

13.
Local scour below a vibrating pipeline under steady current is investigated by a finite element numerical model. The flow, sediment transport and pipeline response are coupled in the numerical model. The numerical results of scour depths and pipeline vibration amplitudes are compared with measured data available in literature. Good agreement is obtained. It is found that pipeline vibrations cause increases of scour depth below the pipeline. The scour pit underneath a two-degree-of-freedom vibrating pipeline is deeper than that under a pipeline vibrating only in the transverse flow direction. The effects of water depth are also investigated. The present numerical result shows that water depth has weak effect on the scour depth. However it does affect the time scale of the scour. The shallower the water depth is, the less time it requires to reaches the equilibrium state of scour. It is found that the vibration forces vortices to be shed from the bottom side of the pipeline. Then vortex shedding around a vibrating pipeline is closer to the seabed than vortex shedding around a fixed pipeline. This contributes to the increase of the scour depth.  相似文献   

14.
推进波作用下海底管线周围局部冲刷试验研究   总被引:1,自引:1,他引:1  
考虑行波作用下的海底管线的局部冲刷问题。采用波浪水槽模型试验的方法,研究波浪荷载引起的管线周围局部冲刷机理和冲刷形态,探讨行波作用下管线周围局部冲刷的演化规律,包括冲刷起动、水土界面沙波的形成以及平衡冲刷深度与KC数(keulegan-carpenter number)和相对埋置深度的关系。  相似文献   

15.
Scour below marine pipelines in shoaling conditions for random waves   总被引:1,自引:0,他引:1  
This paper provides an approach by which the scour depth below pipelines in shoaling conditions beneath non-breaking and breaking random waves can be derived. Here the scour depth formula in shoaling conditions for regular non-breaking and breaking waves with normal incidence to the pipeline presented by Cevik and Yüksel [Cevik, E. and Yüksel, Y., (1999). Scour under submarine pipelines in waves in shoaling conditions. ASCE J. Waterw., Port, Coast. Ocean Eng., 125 (1), 9–19.] combined with the wave height distribution including shoaling and breaking waves presented by Mendez et al. [Mendez, F.J., Losada, I.J. and Medina, R., (2004). Transformation model of wave height distribution on planar beaches. Coast. Eng. 50 (3), 97–115.] are used. Moreover, the approach is based on describing the wave motion as a stationary Gaussian narrow-band random process. An example of calculation is also presented.  相似文献   

16.
In most of the previous studies on local scour around pile foundations, wave-induced pore pressure response has not been taken into account. The local-scour and pore-pressure responses around a large-diameter monopile in combined waves and current have been physically modeled with a specially-designed flow–structure–soil interaction flume. In the series of experiments, the time developments of the scour-depth and the pore-pressure in the proximity of the model pile were measured simultaneously. Experimental results indicate that the wave-induced upward seepage under the wave troughs may weaken the buoyant unit weight of the surrounding sand, which brings the sand-bed more susceptible to scouring. The superimposition of the waves on a current has much effect on the time-development of local scour and the resulting equilibrium scour-depth, which is particularly obvious when the sand-bed is in the clear-water regime under the current or waves alone respectively. It is observed that the maximum flow velocity at the boundary layer for the following-current case is larger than that for the opposing-current case, which further results in faster time development of scour depth and greater equilibrium scour depth for the following-current case.  相似文献   

17.
A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length. The novel strategy is utilized in offshore areas instead of a single flow line. In this regard, there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current. Hence, this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests. Accordingly, at the first phase of the research, a single pipe was established and tested in laboratory to compare the results with those of an empirical equation. After finishing experimental verifications,piggyback pipelines were also assembled to study the scouring under steady current conditions. It was concluded that by increasing the gap distance between the pipes, the maximum scour depth decreases; however, an increase in the small pipe's diameter results in a larger maximum scour depth. Secondly, numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study.Finally, the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.  相似文献   

18.
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case I: pipe is laid above seabed and Case II: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e0/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of Vr for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e0/D (−0.25<e0/D<0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio.  相似文献   

19.
Abstract

The scour phenomena around vertical piles in oceans and under waves may influence the structure stability. Therefore, accurately predicting the scour depth is an important task in the design of piles. Empirical approaches often do not provide the required accuracy compared with data mining methods for modeling such complex processes. The main objective of this study is to develop three data-driven methods, locally weighted linear regression (LWLR), support vector machine (SVR), and multivariate linear regression (MLR) to predict the scour depth around vertical piles due to waves in a sand bed. It is the first effort to develop the LWLR to predict scour depth around vertical piles. The models simulate the scour depth mainly based on Shields parameter, pile Reynolds number, grain Reynolds number, Keulegan–Carpenter number, and sediment number. 111 laboratory datasets, derived from several experimental studies, were used for the modeling. The results indicated that the LWLR provided highly accurate predictions of the scour depths around piles (R?=?0.939 and RMSE = 0.075). Overall, this study demonstrated that the LWLR can be used as a valuable tool to predict the wave-induced scour around piles.  相似文献   

20.
The hydrodynamic pressures induced by regular waves around the circumference of a pipeline normal to the wave direction and near a rigid bed of slope 1:10 have been investigated in a wave flume. The pressures were integrated to obtain the force time history, from which the peak horizontal and vertical forces are evaluated. The maximum and root mean square horizontal and transverse force coefficients are correlated with the Keulegan–Carpenter (KC) number. The effect of the distance between the sloping bed and the pipeline on the force coefficients is discussed. The force coefficients are found to decrease with an increase in KC number and with the decrease in the relative clearance of the pipeline from the boundary. In addition, the reflection characteristics of the sloping bed in the presence of the pipeline as a function of surf similarity parameter and their comparison with the results from existing literature are also reported. The details of the model setup, experimental procedure, results and discussion are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号