首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 811 毫秒
1.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

2.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

3.
许建平 《海洋学报》1990,12(5):549-561
本文利用1985年秋季在东北大西洋中部--加拿利海盆区域中获得的水文观测资料,比较详细地阐述了该区域海水的温-盐度特性、水团分布、斜压流场和地转输送等.分析表明,这一区域中呈现的活性中尺度现象主要归因于源地水团(表层水、北大西洋中央水、地中海水和深层水)和外来水团(亚极地模态水、拉普拉多海水和南极中层水)之间的交织、混合和本身的消长变化.亚速尔海流和加拿利海流构成了亚热带环流的东部再循环.亚速尔海流由多个分支汇合而成.主流位于亚速尔群岛以南35°N,它在15°W附近开始分离.葡萄牙近岸发现的逆向流动可能是它的一个北向分支;亚速尔锋阻止了拉普拉多海水和亚极地中层水的南向入侵,它也是区分西北大西洋(中央)水和东北大西洋(中央)水的明显边界.  相似文献   

4.
北冰洋水体对格陵兰海混合增密对流的可能影响分析   总被引:2,自引:1,他引:1  
格陵兰海内发生的等密度混合后产生的增密对流是重要的对流现象之一。北冰洋正在发生快速变化,其内水团变性以及环流系统的改变都将使格陵兰海等密度混合对流发生明显变化,继而对全球气候变化产生影响。以往关于等密度混合对流的研究很少,大都集中在对流发生海域。由于等密度混合的主体是大西洋回流水与北冰洋流出水体,本文目的是探讨北极内部不同海域的水体会对混合增密对流造成的可能影响。文中定义了有效对流速度,强调水平温度梯度和垂向层化强度是影响有效对流速度的决定性因素;水平温度差越大,垂向层化越弱,产生的对流越强。发生在东格陵兰极锋处的有效对流都是大西洋的水体,一部分是在格陵兰海回流的大西洋回流水;一部分是在北冰洋潜沉并回流的北极大西洋水,该水体在北冰洋循环的时间越长,温度差越大,产生的有效对流越强。而横越北冰洋的太平洋水因密度过低而不能参与等密度混合对流,加拿大海盆主盐跃层之上的水体也都不能参与对流。北冰洋几个海盆深层水的温度差异明显,有可能与格陵兰海深层水形成有效对流;但是,由于深层水流速低、湍流混合弱、水平温度梯度小,是否可以产生有效对流尚不清楚。  相似文献   

5.
西太平洋北赤道逆流槽上部水域1 000m 以浅分布4个水团:北太平洋热带表层水、北太平洋次表层水、北太平洋中层水和南极太平洋中层水,它们的交界分别位于75、200和310m 深左右。在1986~1987年的El Ni(?)o 事件前期,海区温跃层明显上移;上均匀层盐度降低约0.35,近海表面温度略有增加。在1988~1989年的反厄尔尼诺事件盛期,海区温跃层明显下移;上均匀层盐度降低约0.35,近海表面温度则略有升高。  相似文献   

6.
舟山渔场及其邻近海域水团的气候学分析   总被引:23,自引:1,他引:23  
根据多年(1958—1990)月平均温、盐度资料,采用模糊聚类分析法划分了舟山渔场及其邻近海域的水团,并对该海域水团的配置、主要特性及其季节变异特征进行了气候学分析。结果表明,舟山渔场及其邻近海域共存在4个水团,即江浙沿岸水、台湾暖流表层水、台湾暖流深层水和黄海混合水;全年水团的配置可归纳为冬季型、夏季型和过渡型3种类型;江浙沿岸水的主要特征为低盐,其分布范围和盐度的季节变化与长江入海径流密切相关,而温度的季节变化则主要受太阳辐射的影响;台湾暖流表层水具有高温、次高盐特征,其北伸程度和温、盐特性均具有明显的季节变化,即冬季北伸强、温度低、盐度高,夏季北伸弱、温度高、盐度低;台湾暖流深层水以低温、高盐为主要特征,仅存在于4—9月,其温、盐性质较稳定;黄海混合水的主体不在研究海域。  相似文献   

7.
南海北部及巴士海峡附近的水团分析   总被引:4,自引:0,他引:4  
为解释黑潮水进入南海的方式 ,通过对 2 0 0 2年 5月 2 9日~ 6月 6日在南海及巴士海峡附近太平洋海域观测所得的资料进行水团分析 ,以四边形水团定量分析方法得到各水团在海区内的分布状况 ,同时分析了温度、盐度、密度和溶解氧的分布 ,并对在相同深度层次上的南海水和黑潮水性质进行了比较。观测海域的水团分为表层水团 (SW ) ,次表层水团 (SSW ) ,中层水团 (IW )和深层水团 (DW ) ,分别处于 0~ 5 0m ,5 0~ 3 0 0m ,40 0~ 10 0 0m ,10 0 0m以深。黑潮水进入南海 ,但是势力较弱 ,未能越过 119.5°E深入南海。  相似文献   

8.
基于中国Argo实时资料中心发布的2004年1月至2017年12月Argo全球温盐资料,运用直线定位法和隶属关系,对吕宋岛以东海域(120°~140°E,10°~30°N)水团进行分析,划分出北太平洋次表层水团(NPSSW)和北太平洋中层水团(NPIW)的分布范围。次表层水团位于50~220 m深度,分布在10°~28°N范围内,温度16.61~27.60℃,盐度34.68~35.14,核心范围春夏季较大,秋冬季较小。中层水团位于280~900 m深度,分布在10~30°N范围内,温度3.67~16.55℃,盐度34.11~34.67,核心范围季节变化较弱,整体位于18°N以北。次表层与中层水团核心温盐具有一定的年际变化特征,次表层水团与气候变化相关性较好,核心温度和盐度均存在4 a的变化周期;而中层水团与气候变化相关性较差,核心温度和盐度则分别具有3.5 a和3 a的变化周期。  相似文献   

9.
加拿大海盆东南部锚定观测双扩散阶梯的时间演化研究   总被引:1,自引:1,他引:0  
加拿大海盆上层,分布着高温高盐的大西洋水和相对低温低盐的盐跃层下部水,两水团之间形成一系列的双扩散阶梯。通过分析2005年8月-2011年8月期间的锚定潜标数据,对双扩散阶梯和这两种水团之间的相互作用进行研究。基于固定盐度范围的方法,在盐度廓线中识别阶梯结构,在盐度34.45~34.83范围内,获取18个阶梯结构,并研究阶梯的参数。发现双扩散阶梯的位温主要受与其接近的水团的影响,同时也受其相邻的阶梯生成或消亡的影响,大西洋水对其上方的双扩散阶梯和盐跃层下部水起到加热作用;而盐跃层下部水的深度变化主导着大西洋水和双扩散阶梯的深度变化。两个相邻的阶梯具有一致的位温和深度变化趋势。通过经验公式,估计大西洋水通过双扩散阶梯向上传输的热通量为0.05~0.6 W/m2,且由下至上呈现逐渐增大的趋势。最后,估算由双扩散造成的垂向涡扩散系数为3×10-6~3.3×10-5 m2/s,且由下至上呈现逐渐减小的趋势。  相似文献   

10.
E.  V.  Shipilov  韩冰 《海洋地质》2010,(1):44-59
在重建泛大陆裂解和北极地球动力系统演化框架中研究扩张盆地形成的时间序列。通过本研究可识别出扩张盆地形成的3个时空独立的阶段:晚侏罗世-早白垩世、晚白垩世一新生代早期、新生代。第一阶段,作为美亚海盆构造组分的加拿大海盆地的扩张中心形成、演化与消亡。第二阶段是拉布拉多-巴芬-马卡罗夫扩张中心的演化,它在始新世停止活动。第三阶段,极慢速的Mohna、Knipovich和Gakkel洋中脊的形成,至今在格陵兰海及欧亚海盆仍在活动。已有的地质地球物理资料解释表明,在加拿大海盆形成之后,北极地区脱离了古太平洋地球动力的影响,以扩张、俯冲、弧后盆地形成以及碰撞相关的过程等为特征。伴随着太平洋和大西洋的扩张系统向北延伸,马卡罗夫海盆形成,标志着北大西洋的大洋机制的开始(包括典型的陆间裂谷、慢速与超慢速的扩张、陆块的分离、原始盆地扩张中心的消亡、扩张轴的漂移、新的扩张脊和扩张中心的形成等)。上述表明,从。大地构造角度来看,北冰洋事实上是混合的大洋,也就是复合的异源大洋。北冰洋的形成是两个不同时代、不同类型空间并列的地球动力系统作用的结果。加拿大海盆的古太平洋系统,在晚白垩世完成其演化,马卡罗夫和欧亚海盆的北大西洋系统取代了古太平洋系统。与传统观点不同,认为挪威-格陵兰盆地北部的不对称形态是北大西洋两次扩张的结果。第二次扩张中心Knipovich脊始于渐新世一中新世之交,该过程导致Hovgard陆块裂离巴伦支海。泛大陆及其劳亚大陆部分的裂解,伴随着在两侧形成新的扩张盆地,是阶段性的过程。在晚白垩世之前(第一阶段),泛大陆在古太平洋-侧裂解形成加拿大海盆-美亚海盆的一部分(北冰洋形成的第一阶段)。从晚白垩世开始,裂解活动来自北大西洋一侧,导致格陵兰从北美分离,形成拉布拉多-巴芬-马卡罗夫扩张系统(北冰洋形成的第二阶段)。新生代以第二扩张轴的发展为标志,形成挪威-格陵兰海和欧亚海盆(北冰洋形成的第三阶段)。本段扩张中心至今还在活动,但速率极低。  相似文献   

11.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

12.
As a key structure to understand the role of the ocean on the sea ice mass balance, the Arctic Ocean halocline and its spatiotemporal variability require serious attention. In this paper, we are proposing a new definition of the halocline, which is based on the salinity gradient structure, taking into account both the salinity amplitude and the thickness of the halocline. The Brunt Vaisala frequency is used as the halocline stratification index. CTD data collected from 1997 to 2008 and coming from various sources (icebreaker cruises, drifting buoys, etc.) are used to determine the halocline, and its time and space variability during three time periods, with a special focus on three main regions of the Arctic Ocean: the Canada basin, the Makarov basin and the Amundsen basin. Observations reveal that the halocline in the Amundsen basin was always present and rather stable over the three time periods. In contrast, the Canada and Makarov basins' halocline became more stratified during the IPY than before, mainly because of surface water freshening. In addition, observations also confirmed the importance of the halocline thickness for controlling the stratification variability. Observations suggest that both large scale and small scale processes affect the halocline. Changes in surface salinity observed in the Makarov basin are more likely due to atmospheric variability (AO, Dipole Anomaly), as previously observed. More locally, some observations point out that salt/heat diffusion from the Atlantic water underneath and brine rejection during sea ice formation from above could be responsible for salt content variability within the halocline and, as a consequence, being influential for the variability of the halocline. In spite of the existence of interannual variability, the Arctic Ocean main stratification, characterized by a stable and robust halocline until now, suggested that the deep ocean had a limited impact on the mixed layer and on sea ice in actual conditions. The drastic changes observed in Arctic sea ice during this period (1997-2008) cannot be attributed to a weakening of the halocline that could trigger an enhanced vertical heat flux from the deep ocean.  相似文献   

13.
加拿大海盆深层双扩散对流的观测分析   总被引:1,自引:0,他引:1  
The Canada Basin(CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above isolated deep waters. With the temperature-salinity-pressure observations in 2003, 500-m-thick transition layers and lower1 000-m-thick bottom homogenous layers were found below 2 400 m in the central deep CB. Staircases with downward-increasing temperature and salinity are prominent in the transition layers, suggesting the doublediffusive convection in deep CB. The interface of the stairs is about 10 m thick with 0.001–0.002°C temperature difference, while the thicknesses of the homogenous layers in the steps decrease upward from about 60 to 20 m.The density ratio in the deep central CB is generally smaller than 2, indicating stronger double-diffusive convection than that in the upper ocean of 200–400 m. The heat flux through the deepest staircases in the deep CB varies between 0.014 and 0.031 W/m2, which is one-two orders smaller than the upper double-diffusive heat flux,but comparable to the estimates of geothermal heat flux.  相似文献   

14.
Climatological water-mass structures were identified in the Arctic Ocean using the geochemical dataset in the Hydrochemical Atlas of the Arctic Ocean (HAAC) as well as data on a geochemically conserved parameter, PO4*, based on phosphate and dissolved oxygen. In the upper ocean above a depth of 500 m, the HAAC was found to reliably depict the boundary between Pacific-Origin Water (P-Water) and Atlantic-Origin Water (A-Water), which is aligned 135°E–45°W near the surface but rotates counterclockwise with depth. Thus, the Arctic and Atlantic oceans exchange high-silicate P-Water and low-silicate A-Water. The PO4* field in the lower ocean below a depth of 1500 m was analyzed statistically, and the results indicated that the Eurasian Basin receives low-PO4* Nordic Seas Deep Water, which flows along the bottom from the Greenland Sea. The routes from the upper ocean to the lower ocean were determined. Only the southern portion of the Canada Basin, which receives water from the Chukchi and Beaufort Seas, has high PO4* levels; the rest of the Amerasian Basin receives low-PO4* water from the Laptev Sea and/or the Barents Sea. The Eurasian Basin receives moderate levels of PO4* from the Fram Strait and from the intermediate layer. The intermediate-layer water gradually travels up from the lower ocean and returns to the Atlantic, entraining the subsurface portion. It is likely that high-PO4* water occasionally flows down from the upper ocean along Greenland, making the Eurasian Basin heterogeneous.  相似文献   

15.
Dissolved aluminium and the silicon cycle in the Arctic Ocean   总被引:1,自引:0,他引:1  
Concentrations of dissolved (0.2 µm filtered) aluminium (Al) have been determined for the first time in the Eurasian part of the Arctic Ocean over the entire water column during expedition ARK XXII/2 aboard R.V. Polarstern (2007). An unprecedented number of 666 samples was analysed for 44 stations along 5 ocean transects. Dissolved Al in surface layer water (SLW) was very low, close to 1 nM, with lowest SLW concentrations towards the Canadian part of the Arctic Ocean and higher values adjacent to and in the shelf seas. The low SLW concentrations indicate no or little influence from aeolian dust input. Dissolved Al showed a nutrient-type increase with depth up to 28 nM, but large differences existed between the different deep Arctic basins. The differences in concentrations of Al between water masses and basins could largely be related to the different origins of the water masses. In the SLW and intermediate water layers, Atlantic and Pacific inflows were of importance. Deep shelf convection appeared to influence the Al distribution in the deep Eurasian Basin. The Al distribution of the deep Makarov Basin provides evidence for Eurasian Basin water inflow into the deep Makarov Basin. A strong correlation between Al and Silicon (Si) was observed in all basins. This correlation and the nutrient-like profile indicate a strong biological influence on the cycling and distribution of Al. The biological influence can be direct by the incorporation of Al in biogenic silica, indirect by preferential scavenging of Al onto biogenic siliceous particles, or by a combination of both processes. From the slope of the overall Al–Si relationship in the intermediate water layer (AIDW; ~ 200–2000 m depth), an Al/Si ratio of 2.2 atoms Al per 1000 atoms Si was derived. This ratio is consistent with the range of previously reported Al/Si uptake ratio in biogenic opal frustules of diatoms. In the deepest waters (>2000 m depth) a steeper slope of the Al–Si relationship of 7.4 to 13 atoms Al per 1000 atoms Si likely results from entrainment of cold shelf water into the deep basins, carrying the signal of dissolution of terrigenous particles with a much higher Al:Si ratio of crustal abundance. Only a small enrichment with such crustal Al and Si component may readily account for the higher Al:Si slope in the deepest waters.  相似文献   

16.
1Introduction Besidestheprecipitationandriverdischarges,the watersinthePacificOceanandtheAtlanticOceanare thesourcesoftheArcticOceanwater.TheAtlantic waterenterstheArcticOceanviatheFramStraitand theBarentsSea.Foritsdenserfeatureduetohigh salinity,mostofitsinkstothenorthofSvaldbardand circulatesinallthedeepbasinsintheArcticOcean, formingthedeepandbottomwatersoftheArcticO- cean(Aagaardetal.,1985;Rudelsetal.,1999).The BeringStraitistheonlychannelforthePacificwater toflowintotheArcticOce…  相似文献   

17.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

18.
北极河流径流是北冰洋淡水的最大来源,其变化会对北冰洋中的诸多过程有重要影响。本文基于全球高分辨率海洋?海冰耦合模式的模拟结果,研究北冰洋温盐、海冰以及环流对北极河流径流的敏感性。通过对比有气候态北极河流径流输入的控制实验结果和径流完全关闭的敏感性实验结果,研究发现北极径流对北冰洋温度、盐度、海冰以及海洋环流等有显著的影响。关闭北极河流径流后,在河口附近的陆架上温度降低、盐度升高,且导致500 m深度处温度下降以及盐度升高;河口附近的陆架处,海冰密集度与海冰厚度增加。关闭北极河流径流也对北冰洋内的环流有影响:由于缺少来自欧亚大陆的北极径流的输入,穿极漂流与东格陵兰流流速减小且盐度增加;关闭北极径流导致近岸海表面高度降低,沿欧亚陆架的北冰洋边界流减弱,白令海入流增强。通过对比关闭北极径流实验与控制实验的温度和盐度剖面,发现关闭北极径流后大西洋层温度降低,各陆架海盐跃层的梯度减小,盐跃层厚度减小。  相似文献   

19.
本研究基于中国科学院沈阳自动化研究所自主研发的水下滑翔机在热带东太平洋观测获取的连续剖面温盐数据,并通过与多套不同数据的比测,证实国产水下滑翔机观测的温盐数据准确可靠,未来可大范围应用于深海大洋。观测结果首次发现该海域北太平洋中央水(NPCW)(50~100 m)的60~80 m层分布着中间层低盐水,分析认为该低盐水来源于水团下方的加利福尼亚流系水(CCS),中间层低盐水形成的动力机制主要受跃层附近的内波控制,并与内波强度密切相关,同时受上层(20~60 m)障碍层的影响,该中间层低盐水仅仅出现在60~80 m。本研究发现内波与障碍层能够通过影响动能与热能的传输进而促进水团新结构的形成,相关成果丰富了内波与障碍层对上层海洋响应的研究,具有重要的科学价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号