首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The OMNI-Max anchors are newly developed dynamically installed anchors for deep water mooring systems. After installation, the anchor is keyed to a new orientation and position by tensing the attached mooring chain, which is known as the “keying process”. This study conducted 1g model tests to study the trajectories and capacity developments of OMNI-Max anchors in homogeneous and lightly overconsolidated (LOC) clays. A testing arrangement was designed to simulate the anchor keying process with a constant pullout angle at the mudline. A half model anchor which could move against the box glass was used to determine the anchor trajectory in the soil. The effects of padeye offset angle, uplift angle at the mudline, anchor fluke thickness, anchor initial embedment depth, and soil strength on the anchor trajectory and capacity were systematically investigated. Moreover, the critical uplift angle at the padeye and the anchor critical initial embedment depth were discussed. The results indicate that the anchor can dive both in homogeneous and LOC clays under certain conditions. A padeye offset angle of 24–30° is recommended for the OMNI-Max anchor to maintain high capacity and diving trend simultaneously. Besides, the anchor diving trend can be improved with small uplift angles at the mudline and with thick anchor flukes. A critical initial embedment depth of 1.3 times the anchor length is recommended to preclude the anchor from being pulled out.  相似文献   

2.
Gravity installed anchors (GIAs) are the most recent generation of anchoring solutions to moor floating facilities for deepwater oil and gas developments. Challenges associated with GIAs include predicting the initial embedment depth and evaluating the keying performance of the anchor. The former involves high soil strain rate due to large anchor penetration velocity, while the later influences the subsequent behavior and pullout capacity of the anchor. With the coupled Eulerian–Lagrangian method, three-dimensional large deformation finite element models are established to investigate the penetration and keying of GIAs in non-homogeneous clay. In the penetration model, a modified Tresca soil model is adopted to allow the effects of soil strain rate and strain softening, and user-defined hydrodynamic drag force and frictional resistance are introduced via concentrated forces. In the keying model, the anchor line effects are incorporated through a chain equation, and the keying, diving and pulling out behaviors of the anchor can all be replicated. Parametric studies are undertaken at first to quantify the effects of various factors on the performance of GIAs, especially on the penetration and keying behaviors. Based on the results of parametric studies, fitted formulae are proposed to give a quick evaluation of the anchor embedment depth after the installation, and the shackle horizontal displacement, shackle embedment loss and anchor inclination at the end of the keying. Comparative studies are also performed to verify the effectiveness of the fitted formulae.  相似文献   

3.
Undrained bearing capacity of spudcan under combined loading   总被引:1,自引:0,他引:1  
The bearing capacities of spudcan foundation under pure vertical (V),horizontal (H),moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis.The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail.The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors,which are compared with published results.Ultimate limit states under combined loading are presented by failure envelopes,which are expressed in terms of dimensionless and normalized form in three-dimensional load space.The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.  相似文献   

4.
Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform structure. However, under this kind of combined loading conditions, the failure mechanism of caissons with shallow embedment depths is quite different from conventional deep foundations or onshore shallow footings. The behaviour of caissons subjected to combined loadings may be described with the "failure locus" in force resultant spaces. Here the failure loci of smooth caissons are studied by use of finite element approach, with the embedment ratio of caissons varying in the range of 0.25~1.0 and eccentricity ratio of horizontal loadings in 0~10. The platform settlement and tilt limits are involved into determination of failure loci, thus the platforms can avoid significant displacements for the combined loadings located inside the failure locus. Three families of loading paths are used to map out the locus. It is found that the shape of failure loci depends on 3 non-dimensional parameters, and the failure locus of a given caisson changes gradually from the elliptical curve to hooked curve with increasing shear strength of soil. The lateral capacity of short caissons may be enhanced by vertical forces, compared with the maximum lateral capacity of long caissons occurring at the vertical force being zero. The critical embedment ratios partitioning elliptical and hooked loci are proposed.  相似文献   

5.
The response of bucket foundations on sand subjected to planar monotonic and cyclic loading is investigated in the paper. Thirteen monotonic and cyclic laboratory tests on a skirted footing model having a 0.3 m diameter and embedment ratio equal to 1 are presented. The loading regime reproduces the typical conditions of offshore wind turbines: very large cyclic overturning moment, large cyclic horizontal load and comparatively little, self-weight induced, vertical load. The experimental soil-foundation response is interpreted within the macro-element approach, using an existing analytical model, suitably modified to accommodate the footing embedment and the application of cyclic load. Details of the proposed model are provided together with evidences of its ability to reproduce the essential features of the experimentally observed behaviour. The results of the study aim at increasing the confidence in the use of the macro-element approach to predict the response of bucket foundations for offshore wind turbines, notably as the long-term accumulated displacements are concerned.  相似文献   

6.
Semi-deep skirted foundations are now considered to be a viable foundation option for a variety of onshore and offshore applications. The capacity under combined vertical, horizontal, and moment loadings must be found to ensure their capability and stability. In this study, undrained bearing capacity subjected to vertical loading, as part of combined loading is determined through stress characteristics and finite element analyses. Circular skirted foundations with different soil strength and geometries considering embedment depth effects have been studied. Stress field, kinematic mechanism accompanying failure, and bearing capacity factors for various embedment ratios are investigated. Acquired vertical failure mechanism has demonstrated the transition from a general shear to a punch shear failure. Comparisons with different research works including conventional methods, upper and lower bound, finite element analyses, physical modeling, experimental, and centrifuge tests have indicated the underestimation of conventional approaches and accuracy of proposed methods in determining bearing capacity. Furthermore, differences between predicted bearing capacities and the results of this study increased with D/B ratio due to ignoring the significant role of skin friction in larger embedment circumference.  相似文献   

7.
Taut mooring systems have become prospective alternatives for the station keeping of offshore floating facilities in deep water. The associated embedded anchors cause a part of the mooring line to be buried in the seabed − the inverse catenary − which introduces a requirement to predict the load and uplift angle at the padeye, where the chain is connected to the anchor. The padeye load and angle depend on the shape and tension profile of the inverse catenary, which must be assessed in the mooring system design. The dynamic interaction between the embedded chain and the soil in the inverse catenary is not usually considered in this analysis. Instead, the inverse catenary is assessed statically, albeit potentially using cyclically-degraded soil strength parameters. The present study employs the lumped mass method to simulate the dynamic response of mooring lines under different imposed oscillations at the fairlead, where the chain is connected to the floating facility. A new chain-soil interaction model, which includes hysteresis effects associated with irrecoverable relative chain-soil displacement is calibrated by experimental results. Simulations of cyclic vessel motion are then performed, and the resulting chain-seabed interaction is observed. During constant-amplitude vessel motion cycles, the load angle at the padeye significantly decreases due to progressive ratcheting or ‘shakedown’ of the inverse catenary from the initial static profile towards a straighter profile. This effect is due to the hysteretic soil response and creates a less onerous loading condition for the anchor which may be beneficial, but is conventionally overlooked in design. At the end of the present study, an elastic bound method is proposed to estimate the profile of the inverse catenary after shakedown. A parametric study illustrates the performance of this simple method for predicting the steady state condition.  相似文献   

8.
In this paper, results of a three-dimensional finite element study addressing the effect of embedment ratio (L/D) of caisson foundations on the undrained bearing capacity under uniaxial and combined loadings are discussed. The undrained response of caisson foundations under uniaxial vertical (V), horizontal (H) and moment (M) loading are investigated. A series of equations are proposed to predict the ultimate vertical, moment and maximum horizontal bearing capacity factors. The undrained response of caisson foundations under combined V-H and V-M load space is studied and presented using failure envelopes generated with side-swipe method. The kinematic mechanism accompanying failure under uniaxial loading is addressed and presented for different embedment ratios. Predictions of the uniaxial bearing capacities are compared with other models and it is confirmed that the proposed equations appropriately describe the capacity of caisson foundations under uniaxial vertical, horizontal and moment loading in homogenous undrained soils. The results of this paper can be used as a basis for standard design codes of off-shore skirted shallow foundations which will be the first of its kind.  相似文献   

9.
With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated and significantly affected by the anchor line. Based on the coupled Eulerian–Lagrangian (CEL) method, a numerical approach incorporating anchor line effects is developed to investigate comprehensive anchor behaviors in the soil, including penetration of drag anchors, keying of suction embedded plate anchors and diving of gravity installed anchors. Compared to the method directly incorporating the anchor line into the CEL analysis, the proposed method is computationally efficient. To examine the robustness and accuracy of the proposed method, numerical probe tests and then comparative studies are carried out. It is found that the penetration (or diving) and keying behaviors of anchors can be well simulated. A parametric study is also undertaken to quantify the effects of various factors on the behavior of OMNI-Max anchors, whose mechanisms are not yet fully understood. The maximum embedment loss of OMNI-Max anchors during keying is not influenced by the initial anchor embedment depth, whereas significantly increases with increasing drag angle at the embedment point. With decreasing initial anchor embedment depth or increasing soil strength gradient, drag angle at the embedment point and diameter of the anchor line, the behavior of OMNI-Max anchors could change from diving to pullout, which is undesirable in offshore engineering practice. If the drag angle increases over a certain limit, the anchor will fail similar to a suction anchor.  相似文献   

10.
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.  相似文献   

11.
A 1-g model experimental study was conducted to investigate the accumulated rotations and unloading stiffness of bucket foundations in saturated loose sand. One-way horizontal cyclic loading was applied to model bucket foundations with embedment ratios 0.5 and 1.0. Up to 104 cycles of loading were applied at a frequency of 0.2 Hz varying load amplitudes. The accumulated rotation of the bucket foundations increased with the number of cycles and the load amplitudes. Empirical equations were proposed to describe the accumulated rotation of the foundations. The unloading stiffness of foundations increased with the number of cycles but decreased with an increase in load amplitude. The initial unloading stiffness of L/D = 1.0 (L is skirt length; D is foundation diameter) was approximately twice that of L/D = 0.5. Excess pore water pressure difference of 50% was observed between L/D = 0.5 and 1.0. The suction and static capacity of the bucket increased with increase of bucket embedment ratio with a difference of 69.5% and 73.6% respectively between L/D = 0.5 and 1.0.  相似文献   

12.
Coastal protective structures, such as composite breakwaters, are generally vulnerable to earthquake. It was observed that breakwaters damage mainly due to failure of their foundations. However, the seismically induced failure process of breakwater foundation has not been well understood. This study describes failure mechanism of breakwater foundation as well as a newly developed reinforcing model for breakwater foundation that can render resiliency to breakwater against earthquake-related disasters. Steel sheet piles and gabions were used as reinforcing materials for foundation. The experimental program consisted of a series of shaking table tests for conventional and reinforced foundation of breakwater. Numerical analyses were conducted using finite difference method, and it was observed that the numerical models were capable to elucidate the seismic behavior of soil–reinforcement–breakwater system. This paper presents an overview of the results of experimental and numerical studies of the seismic response of breakwater foundation. Overall, the results of these studies show the effectiveness of the reinforced foundation in mitigating the earthquake-induced damage to the breakwater. Moreover, numerical simulation was used for parametric study to determine the effect of different embedment depths of sheet piles on the performance of breakwater foundation subjected to seismic loading.  相似文献   

13.
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.  相似文献   

14.
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs(modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.  相似文献   

15.
Abstract

It is important to understand the deformation mechanism of methane-hydrate specimens (MHSs) to avoid deforming the seabed during methane-hydrate production. For this purpose, discrete-element method (DEM) modelling is advantageous because it requires much less cost and effort compared to artificial specimens and in situ sediments. In this study, a method for generating DEM numerical simulation models of MHSs is proposed to study the deformation mechanism of MHSs. First, numerical models that consider the saturation of methane hydrate (SMH), following which the bi-axial compression of these models is simulated. The mechanisms controlling the shear strength of MHSs are verified and modified by investigating the stress–strain response behavior, crack-development process, and evolution of the void change rate (Echange) of MHSs. The increases of the peak strength and secant elastic modulus of the MHS with the increment of confining pressure follow parabolic relationships. Under different loading rates, the peak strength tends to increase parabolically with the increment of loading rate, while the relationship between the secant elastic modulus and loading rate is linear. Based on the testing results, empirical formulas of peak stress and elastic modulus are proposed for different confining-pressure and strain-rate conditions.  相似文献   

16.
ABSTRACT

Bucket foundations have been widely used for a variety of offshore applications. The effects of skirt length on ultimate bearing capacity of bucket foundation have been studied and reported in published scientific papers. However, few studies have addressed the behavior of bucket foundations in loose saturated sand. In this paper, a series of experimental investigations were performed to determine the bearing capacity of bucket foundation under uniaxial loading. The experiments were conducted on small-scale foundations under vertical loading in loose saturated sand. It was found that increasing the skirt length would enhance the bearing capacity of bucket foundation. As reflected in the present study, bearing strength might be enhanced more than 5 times in loose saturated sand in comparison to surface footing with equivalent diameter. Based on the experimental investigation, a depth factor was proposed to approximate bearing capacity of bucket foundations in terms of those for surface footing and embedment ratio. Moreover, the corresponding settlement of foundation at the failure load was found to increase with skirt length.  相似文献   

17.
The steady flow-induced instability of a partially embedded pipeline involves a complex process of pipe-soil interaction. In accordance with the hydrodynamic loading and the dimensionless analyses, a series of pipe-soil interaction tests have been conducted with an updated pipe-soil interaction facility including a load-displacement synchronous measurement system, to reveal the underlying pipe-soil interaction mechanism. The effects of pipe surface roughness, end-constraint and initial embedment are investigated, respectively. The values of lateral-soil-resistance coefficient for the rough pipes are bigger than those for the smooth pipes. For a fixed value of non-dimensional submerged weight, the values of lateral-soil-resistance coefficient for the anti-rolling pipes are much larger than those for the freely laid pipes. The effects of initial embedment on the ultimate soil resistance get less with the decrease of the submerged weight of the pipe. A comparison is made between the results of the present mechanical-actuator tests and those of the previous water-flume tests, indicating that those results are quite comparable. For the equivalent level of dimensionless submerged weight, the directly laid pipe in currents has higher lateral stability than in waves.  相似文献   

18.
Mooring systems typically consist of an anchor and a mooring line and chain that connect the anchor to the floating infrastructure. When the anchor connection point (the ‘padeye’) is below the seabed surface, the interaction between the chain and the seabed will affect the amount of load transferred to the anchor and the load angle at the padeye. Reliable methods are needed therefore to assess these aspects in order to determine appropriate anchor design.Available solutions for the interaction between soil and chain generally ignore any reduction in the undrained shear strength of the soil as it is remoulded under the large strains associated with tensioning of the anchor chain. This is an unconservative assumption for anchor design, hence providing motivation for the study presented here. The system behaviour and the interaction of short chain segments with the seabed have been studied using a coupled Eulerian-Lagrangian (CEL) approach. The findings have led to two new design approaches that encapsulate how remoulding of the soil (which affects sliding resistance more than bearing resistance) affects the chain system response. Calculations using these methods captured the modelled chain system response well. Both the global chain analyses and the proposed design approaches suggest that approximately the entire chain load at the seabed surface (the ‘mudline’) is likely to be transferred to the anchor padeye, challenging conventional design practice.  相似文献   

19.
Coastal protection is proposed to be made out of a contiguous caisson type of wall. These caissons can be designed to resist both lateral static and cyclic loading. With adequate depth of embedment, the walls can be designed to offer significant lateral passive resistance to counteract the lateral static and cyclic loading arising out of wave action. This article describes a set of laboratory tests on model caissons embedded into soft marine clay with different embedment depths. Specially designed earth pressure cells are embedded into the caisson at different depths. A pneumatic system was used to apply lateral static and cyclic loading. Test beds were prepared conforming to soft clay conditions in a test tank of appropriate size. The test results reveal that with this type of arrangement the variation in earth pressure with depth can be conveniently established. The earth pressure developed is related to the lateral load applied. The depth at which the maximum earth pressure occurs is same for both static and cyclic loading. Further, under cyclic loading there is no failure encountered even under cyclic loading level corresponding to 0.9 times the ultimate static lateral capacity.  相似文献   

20.
In this study, simple shear tests on breakable polydisperse granular materials were simulated using two-dimensional discrete element method (DEM). A new technique of generating polydisperse DEM samples with a smooth and continuous particle size distribution curve was proposed. A modified breakage criterion was introduced to reflect the contact force anisotropy of particles in the numerical sample. The simulation results showed that during the simple shearing, grain crushing in the sample mainly occurred in the contraction process and decreased gradually when the sample began to dilate. As the shearing proceeded to a larger strain, the grain crushing tended to a stable value. This grain crushing trend was in accordance with the evolution of the average normal contact forces of particles in the sample during shearing. The average normal contact forces of potential breakage particles increased in the contraction process and decreased in the dilatancy process. A decrease in the average normal contact forces of potential breakage particles resulted in the decrease in grain crushing during the later stage of shearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号