首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study pore water response and static liquefaction characteristics of silty sand, which has previously experienced liquefaction, two series of monotonic triaxial tests were run on medium dense sand specimens (RD = 50%) at confining pressure of 100 kPa. In the first test series, the influence of the soil saturation under undrained static loading has been studied. It summarizes results of monotonic tests performed on Chlef sand at various values of the Skempton's pore pressure coefficient. Analysis of experimental results gives valuable insights on the effect of soil saturation on sand response to undrained monotonic paths. In the second series of tests, the overconsolidation influence on the resistance to the sands liquefaction has been realized on samples at various values of overconsolidation ratios (OCR). It was found that the increase of overconsolidation ratio (OCR) increases the resistance of sands to liquefaction.  相似文献   

2.
This article presents a laboratory study of static behavior of silty-sand soils. The objective of this laboratory investigation is to study the effect of initial confining pressures and fines content on the undrained shear strength (known as liquefaction resistance) response, pore pressure, and hydraulic conductivity of sand–silt mixtures. The triaxial tests were conducted on reconstituted saturated silty-sand samples at initial relative density Dr = 15% with fines content ranging from 0 to 50%. All the samples were subjected to a range of initial confining pressures (50, 100, and 200 kPa). The obtained results indicate that the presence of low plastic fines in sand–silt mixture leads to a more compressible soil fabric, and consequently to a significant loss in the soil resistance to liquefaction. The evaluation of the data indicates that the undrained shear strength can be correlated to fines content (Fc), inter-granular void ratio (eg), and excess of pore pressure (Δu). The undrained shear strength decreases with the decrease of saturated hydraulic conductivity and the increase of fines content for all confining pressures under consideration. There is a relatively high degree of correlation between the peak shear strength (qpeak) and the logarithm of the saturated hydraulic conductivity (ksat) for all confining pressures.  相似文献   

3.
From this research, overconsolidated undrained and drained behaviors of specimens with high sand content were highly dilatant. According to the comparison results of laboratory tests, the deviator stresses of silty sand were greater than sandy silt due to high sand content under increasing OCRs, and both silty sand and sandy silt were presented strain softening tendency after failure under undrained loading. The pore water pressure increased with increasing fines content under increasing OCRs. Silty sand exhibited more dilatancy and increasing shear strength than sandy silt because pore water pressures of silty sand were lower than sandy silt under higher OCRs. In overconsolidated drained tests, silty sand is higher strength than sandy silt because silty sand has a lower volumetric strain and higher deviator stress than sandy silt under increasing OCRs. As the degree of overconsolidation increased, similar behaviors of silty sand and sandy silt observed that volumetric strain decreased to negative values due to dilatancy effect and low-cohesion under current effective confining pressures.  相似文献   

4.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

5.
Abstract

This article presents a study of liquefaction resistance behaviour of sand using a cyclic triaxial test. The site investigation was performed, and frozen undisturbed specimens were taken from the Izumio site in Osaka, Japan. According to the evidence in 1995 Kobe Earthquake, the first two sand layers are vulnerable to undergo liquefaction. The effect of deviatoric stress on liquefaction resistance was focused on in this study. The excess pore pressure ratio, hysteresis loop, and effective stress path from the cyclic triaxial tests were reported. A multispring element model was employed to simulate the soil behaviour under cyclic loading. The results showed that applied deviatoric stress could influence the liquefaction resistance of sandy soil samples. The plots of the cyclic stress ratio versus the number of cycles to generate liquefaction known as a liquefaction resistance curve can be then constructed and compared with other sands.  相似文献   

6.
利用高压低温三轴仪对含水合物粉细砂进行剪切试验。分别用气饱和法与水饱和法制样,实现不同水合物饱和度和围压条件的三轴剪切,并分析含水合物砂的胶结作用对剪切特性的影响。试验结果表明:低饱和度时,气饱和与水饱和试样的偏应力差别不大;高饱和度时,制样方式对偏应力的影响较显著;水饱和试样的剪胀性大于气饱和试样,剪胀性随饱和度的升高和围压的降低而增大。峰值偏应力和稳态偏应力由黏聚力和摩擦力两部分组成,水合物的存在对稳态内摩擦角影响不大。  相似文献   

7.
A stress path with continuous rotation of the principal stress direction and continuous alteration of amplitude of deviatoric stress difference under the interaction of wave and earthquake loading was proposed based on the characteristics of the stress path under wave and earthquake loading, respectively. Using a GDS dynamic hollow cylinder apparatus, a series of cyclic triaxial-torsional coupling shear tests were performed on Nanjing saturated fine sand via the stress path mentioned previously under different relative densities, effective initial confining pressures, plastic fines contents, and loading frequencies to study the development of excess pore water pressure (EPWP) of saturated sand under the interaction of wave and earthquake loading. It was found that the development of EPWP follows the trend of fast-steady-mutative-drastic, which is different from that under the cyclic triaxial test or wave loading. The number of cycles causing initial liquefaction (NL) of saturated sand increases remarkably with relative densities. However, the relationships between NL and effective initial confining pressures, plastic fines content, or loading frequencies are more complex.  相似文献   

8.
Abstract

Construction of the reefs in the South China Sea is a significant foundation to the secure stability and economic development of China. The construction of an airport runway is necessary for this realization. The calcareous sand is the main primary material in the runway construction. A certain type of calcareous sand near a certain reef of the South China Sea was studied in this paper. To investigate this specific calcareous sand, quartz sand was used as a reference for comparison. Microscopic 3-D imaging, compression and triaxial tests were conducted to test the micro, squeezing and shear properties. The effect mechanism of gradation on the calcareous sand’s compressibility and shear characteristics are discussed from a mesoscopic viewpoint using 3-D morphology. Calcareous sand particles are multiangular and flatter in comparison with quartz sand. The larger the particle sizes are, the more different the two sands’ morphologies are. The compressibility of calcareous sand is greater, and the effect of the coarse fraction (5–1?mm) content in the gradation plays the most significant role in this feature. When the coarse particles’ content is less than 25% and the mass ratio of the middle and fine particles (M) is constant, there is the worst coarse fraction content causing the calcareous sand to be most likely compressed. The worst coarse fraction content decreases with the increase in M, and an empirical formula is proposed. When the gradation, relative density and confining pressure are the same, the peak shear stress and strain of calcareous sand are all at a high level. The effect of confining pressure is manifested in calcareous sand. The shear strength and dilation of calcareous sand are also most affected by the medium coarse fraction (5–0.25?mm) content.  相似文献   

9.
Abstract

Hollow cylinder torsional shear tests on loose isotropically and anisotropically consolidated calcareous sand were conducted to investigate the cyclic behavior under three different linear stress paths, including horizontal line, oblique line, and vertical line stress paths, in a coordinate system of the normal stress difference and the horizontal shear stress. The dominant strain components of the isotropically consolidated specimens are affected by the stress paths. With increasing consolidation stress ratio, axial strain gradually becomes the dominant strain component under the three different stress paths. The cyclic strength of the isotropically consolidated specimens under the three different stress paths are almost the same, while for the anisotropically consolidated specimens, the cyclic strengths are strongly affected by the stress paths. These results indicate that conventional cyclic triaxial tests may overestimate cyclic strength in some cases. Irrespective of the stress paths and cyclic stress ratios, the terminal residual excess pore pressure ratio decreases with increasing consolidation stress ratio. Moreover, an empirical equation is proposed to describe the relationship between the normalized shear work and the normalized residual excess pore pressure ratio. The comparative study reveals that the relationship proposed for silica sand is not suitable for the dynamic analyses of calcareous sand.  相似文献   

10.
未胶结钙质砂静力和循环强度的单剪试验研究   总被引:1,自引:1,他引:0  
王晓丽  裴会敏  王栋 《海洋工程》2018,36(6):124-129
通过等体积的单调和循环单剪试验研究南海未胶结钙质砂的静、动力反应,讨论应力水平和相对密实度对钙质砂静、动力强度的影响,并与典型的石英砂性质进行比较。在单调单剪试验中,中密和密实钙质砂在100~400 k Pa范围的初始竖向应力下都表现出应变硬化的性质,有效内摩擦角随剪应变增大。在循环单剪试验中,钙质砂的反应与相对密实度和初始竖向应力密切相关,但中密和密实钙质砂中的等效孔压都能达到初始竖向应力的85%~90%,此时剪应变突增,试样发生破坏。与相近密实度的石英砂相比,钙质砂抵抗液化的能力更强。提出了南海钙质砂动强度的归一化表达式,建立了不排水静强度、不排水动强度和循环次数之间的关系。  相似文献   

11.
Abstract

Liquefaction is a phenomenon developed in loose and saturated layers of sands subjected to dynamic or seismic loading, and often leads to excessive settlement and subsequent failures in structures. Several methods have been proposed to improve soil resistance against liquefaction, among which use of stone columns is one of the most applicable methods. In this research, the effect of stone columns with different geometries and arrangements on the liquefaction behaviour of loose and very loose saturated sands subjected to vibration is investigated using shaking table. Results of the experiments show that when using stone columns in sand layers, the level of maximum settlement is significantly reduced. Further, the presence of stone columns significantly reduces pore water pressure ratio. This further indicates that stone columns have a positive effect and reasonable performance, even in relatively strong earthquakes, provided that the number and cross-section of the columns are sufficient. In addition, stone columns reduce the pore water pressure dissipation time. Moreover, by increasing cross-sectional area and the number of columns, both pore water pressure and settlement decrease. Stone columns in loose sand have a greater effect on the reduction of pore water pressure compared to that of very loose sand.  相似文献   

12.
In order to investigate the characteristics of water wave induced liquefaction in highly saturated sand in vertical direction, a one-dimensional model of highly saturated sand to water pressure oscillation is presented based on the two-phase continuous media theory. The development of the effective stresses and the liquefaction thickness are analyzed. It is shown that water pressure oscillating loading affects liquefaction severely and the developing rate of liquefaction increases with the decreasing of the sand strength or the increasing of the loading strength. It is shown also that there is obvious phase lag in the sand column. If the sand permeability is non-uniform, the pore pressure and the strain rise sharply at which the smallest permeability occurs. This solution may explain why the fracture occurs in the sand column in some conditions.  相似文献   

13.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

14.
We present in situ strength and pore-pressure measurements from 57 dynamic cone penetration tests in sediments of Mecklenburg (n?=?51), Eckernförde (n?=?2) and Gelting (n?=?4) bays, western Baltic Sea, characterised by thick mud layers and partially free microbial gas resulting from the degradation of organic material. In Mecklenburg and Eckernförde bays, sediment sampling by nine gravity cores served sedimentological characterisation, analyses of geotechnical properties, and laboratory shear tests. At selected localities, high-resolution echo-sounder profiles were acquired. Our aim was to deploy a dynamic cone penetrometer (CPT) to infer sediment shear strength and cohesion of the sea bottom as a function of fluid saturation. The results show very variable changes in pore pressure and sediment strength during the CPT deployments. The majority of the CPT measurements (n?=?54) show initially negative pore-pressure values during penetration, and a delayed response towards positive pressures thereafter. This so-called type B pore-pressure signal was recorded in all three bays, and is typically found in soft muds with high water contents and undrained shear strengths of 1.6–6.4 kPa. The type B signal is further affected by displacement of sediment and fluid upon penetration of the lance, skin effects during dynamic profiling, enhanced consolidation and strength of individual horizons, the presence of free gas, and a dilatory response of the sediment. In Mecklenburg Bay, the remaining small number of CPT measurements (n?=?3) show a well-defined peak in both pore pressure and cone resistance during penetration, i.e. an initial marked increase which is followed by exponential pore-pressure decay during dissipation. This so-called type A pore-pressure signal is associated with normally consolidated mud, with indurated clay layers showing significantly higher undrained shear strength (up to 19 kPa). In Eckernförde and Gelting bays pore-pressure response type B is exclusively found, while in Mecklenburg Bay types A and B were detected. Despite the striking similarities in incremental density increase and shear strength behaviour with depth, gas occurrence and subtle variations in the coarse-grained fraction cause distinct pore-pressure curves. Gaseous muds interbedded with silty and sandy layers are most common in the three bays, and the potential effect of free gas (i.e. undersaturated pore space) on in situ strength has to be explored further.  相似文献   

15.
The shear strength properties of sediments are relevant to many practical problems, including those related to predicting the bearing capacity of the man-made crust lying over dredged disposal sites and those associated with estimating the erosion resistance and the bearing capacity of sediments. In this study, an experimental apparatus and method is developed for sedimentation. This apparatus consists of a settling column, pore measurement apparatus, shear vane apparatus, and multilayer extraction sampling apparatus. The change regulation of interface height, density, excess pore pressure, peak undrained shear strength, residual undrained shear strength, and sensitivity varies before and after the excess pore pressure dissipates to zero in the self-weight consolidation stage. The higher the water content, the greater the particle segregation degree. Particles are mainly segregated in the settling stage, and they are not segregated further in the self-weight consolidation stage. Before excess pore pressure dissipates to zero in the self-weight consolidation stage, shear strength is related to water content, effective stress, and the formed structure of sediments. After excess pore pressure dissipates to zero, peak undrained shear strength is mainly associated with the structure (thixotropy) of sediments. Residual undrained shear strength increases because of the slight decrease in water content. The mechanisms of thixotropy can be expressed as the increase in the original and curing cohesions of sediments with time as determined from microscopic aspects.  相似文献   

16.
Vacuum preloading is often used to improve the geotechnical properties of dredged slurry. Although the performance of this method has improved with rapidly developing technology, soil columns usually formed on the drainage boundary induce the decrease of permeability around the boundary, thereby limiting the further development of this method. To address this issue, this paper proposes a method for pretreating the slurry combined with sand prior to vacuum consolidation. This method partially replaces the fine particles with sand to reduce the formation of soil columns. Two groups of vacuum preloading tests were performed to investigate the effect of sand content and sand grain size on the vacuum consolidation of dredged slurry. The test results revealed that for a given sand grain size, increasing the sand content of the sand–slurry mixture increased the pore water drainage and accelerated the dissipation of pore water pressure, thereby increasing the vane shear strength. In contrast, for a constant sand content, the samples containing coarse sand exhibited increased pore water drainage and accelerated dissipation of pore water pressure, thereby increasing the vane shear strength of the soil.  相似文献   

17.
The liquefaction resistance of the soils used to be estimated through the in situ tests, such as standard penetration test and cone penetration test; or by means of cyclic triaxial test in laboratory. However, both in situ tests and cyclic triaxial test are time-consuming and costly; this study introduces a quick and cost-effective method to evaluate the liquefaction resistance of soils under certain confining pressure in laboratory. A particular device modified from the conventional triaxial compression test apparatus, namely “Triaxial Cone Penetration Test”, was developed to obtain the peak values of cone resistance in soils so as to correlate the liquefaction resistance of the reclaimed soils evaluated by cyclic triaxial tests. The test result indicates a good correlation between the peak value of cone resistance and the corresponding cyclic stress ratio (CSR) at the state of initial liquefaction, in which the correlation for loose samples is better than that for dense samples. Besides, both peak values of cone resistance and corresponding CSR increase with fine content of soils reaches 10% and decreased with fine content varying between 10% and 50%. By examining the compositions of the soils with scanning electron microscopy and X-ray diffraction, it is found that the proportion and characteristics of the fines plays an important role on the liquefaction resistance of the reclaimed soils.  相似文献   

18.
The hydraulic conductivity plays a major role on the excess pore pressure generation during monotonic and cyclic loading of granular soils with fines. This paper aims to determine how much the hydraulic conductivity and pore pressure response of the sand-silt mixtures are affected by the percentage of fines and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests performed on samples reconstituted from Chlef River sand with 0, 10, 20, 30, 40, and 50% nonplastic silt at an effective confining stress of 100 kPa and two relative densities (Dr = 20, and 91%) are presented and discussed. It was found that the pore pressure increases linearly with the increase of the fines content and logarithmically with the increase of the intergranular void ratio. The results obtained from this study reveal that the saturated hydraulic conductivity (k) of the sand mixed with 50% low plastic fines can be, on average, four orders of magnitude smaller than that of the clean sand. The results show also that the hydraulic conductivity decreases hyperbolically with the increase of the fines content and the intergranular void ratio.  相似文献   

19.
循环荷载下粉土液化流动特性拖球试验研究   总被引:1,自引:1,他引:0  
刘涛  张美鑫  崔逢 《海洋学报》2017,39(3):115-121
基于流体力学中的Stokes黏滞阻力理论,以振动台试验为基础,开发了一套测量液化过程中粉土流变特性的拖球试验装置。在铺有粉土海床的模型箱内埋设光滑小球,通过测量小球水平运动过程中所受阻力值的大小,计算粉土液化的表观动力黏度,分析粉土液化过程中的表观动力黏度与超孔压比之间的关系,以及液化后表观黏度与应变率的变化规律。试验结果表明,振动台试验下,孔隙压力表现为迅速上升,粉土迅速达到液化状态;振动过程对海床固结影响较大;粉土海床在未达到完全液化状态时(ru<1),表观黏度随超孔压比增大而减小,在液化状态下(ru=1),剪应力随应变率增大而减小,粉土呈现出剪切稀化的特点,为典型的非牛顿流体特征。  相似文献   

20.
One of the important design considerations for marine structures situated on sand deposits is the potential for instability caused by the development of excess pore pressure as a result of wave loading. A build-up of excess pore pressure may lead to initial liquefaction. The current practice of liquefaction analysis in marine deposits neglects the effects of structures over seabed deposits. However, analyses both in terrestrial and marine deposits have shown that the presence of a structure, depending on the nature of the structure and initial soil conditions, may decrease or increase the liquefaction potential of underlying deposits. In the present study, a wave-induced liquefaction analysis is carried out using mechanisms similar to earthquake-induced liquefaction. The liquefaction potential is first evaluated using wave-induced liquefaction analysis methods for a free field. Then by applying a structure force on the underlying sand deposits, the effect of the structure on the liquefaction potential is evaluated. Results showed that depending on the initial density of the sand deposits and different structures, water depths and wave characteristics, the presence of a structure may increase or decrease the liquefaction potential of the underlying sand deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号