首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the geotechnical investigation data of artificial island at Dalian Offshore Airport, the spatial distribution of the physical and mechanical properties of deposit soils was statistically analyzed. The field investigation revealed that the deposit soils could be subdivided into three strata, i.e., the top marine deposit stratum, middle marine-continental deposit stratum, and deep continental deposit stratum. Field and laboratory test results demonstrated that the marine deposit soils had high water content (31.2% < wn < 63.10%), large void ratio (0.88 < e0 < 1.75), low permeability (kv < 10?6 cm/s), flow-plastic state (IL > 1), under consolidated (OCR < 1), high compressibility (Es < 4 MPa), low shear strength (11.7 kPa < cu < 43.7 kPa), and low bearing capacity (0 < fak < 120 kPa), they could not be used as natural foundation. The marine-continental and continental deposits were normally consolidated to over-consolidated (OCR ≥ 1), medium compressibility (4 MPa < Es < 20 MPa), high shear strength (29.7 kPa < cu < 73.7 kPa), and high bearing capacity (fak > 120 kPa). In addition, regression analysis results showed that the compression ratio was positively correlated with the natural water content, the coefficient of vertical consolidation was negatively correlated with the plasticity index, and the coefficient of vertical permeability was positively correlated with the initial void ratio. The results of the field and laboratory tests were synthesized to provide a basis for reclamation design.  相似文献   

2.
3.
4.
Abstract

This article examines whether Digital Elevation Model (DEM) resolution affects the accuracy of predicted coastal inundation extent using LISFLOOD-FP, with application to a sandy coastline in New Jersey. DEMs with resolution ranging from 10 to 100 m were created using coastal elevation data from NOAA, using the North American Vertical Datum of 1988. A two-dimensional hydrodynamic flood model was developed in LISFLOOD-FP using each DEM, all of which were calibrated and validated against an observed 24-h tidal cycle and used to simulate a 1.5 m storm surge. While differences in predicted inundated area from all models were within 1.0%, model performance and computational time worsened and decreased with coarser DEM resolution, respectively. This implied that using a structured grid model for modeling coastal flood vulnerability is based on two trade-offs: high DEM resolution coupled with computational intensity, but higher precision in model predictions, and vice versa. Furthermore, water depth predictions from all DEMs were consistent. Using an integrated numerical modeling and GIS approach, a two-scale modeling strategy, where a coarse DEM is used to predict water levels for projection onto a fine DEM was found to be an effective, and computationally efficient approach for obtaining reliable estimates of coastal inundation extent.  相似文献   

5.
于2009年8月在海南省东寨港、亚龙湾青梅港和三亚河口红树林区,分别采用自行研制的沉积物耗氧量(Sediment oxygen demand,SOD)测定装置,对红树林湿地SOD和相关环境因子进行研究。结果表明,红树林湿地沉积物耗氧主要分为2个阶段,即瞬时耗氧阶段和渐缓耗氧阶段。3个站位的SOD值范围为102.2-157.7mg/(m2·h),其中瞬时耗氧占23.3%-45.5%。SOD与沉积物中的硫化物含量及上覆水中的化学耗氧量(Chemical oxygen demand,COD)、NH4+浓度有显著的相关性。研究结果表明,红树林湿地沉积物能对其上覆水释放有机物并消耗水体中的溶解氧,使水质变差,因此,用红树林湿地处理城市污水可能导致生态恶化。  相似文献   

6.
This study presents data on chloride and bromide concentrations in porewater, water and anion diffusion coefficients, and their accessible porosities based on radial diffusion experiments on rock samples collected from a 2000 m-deep borehole (EST433) drilled by Andra in the eastern Paris Basin. The distributions of water stable isotope and chloride concentrations in porewater along this column reveal transient flows of water and solutes between the aquitard layers and the surrounding aquifers. These distributions confirm the occurrence of two separate aquitard/aquifer systems: “Oxfordian/Callovo–Oxfordian/Dogger” and “Dogger/Liassic/Rhaetian”. This separation is confirmed by Cl/Br ratios, which are low in Liassic and Dogger porewater, suggesting the influence of primary brines, and which are close to the marine ratio in the Dogger groundwater. Based on these results, transport simulations in the two systems were carried out according to different scenarios. The simulation results confirm that transport properties obtained in the laboratory at sample scale may be extrapolated to the formation scale. It is highly probable that diffusion is the main transport process in the Callovo–Oxfordian formation. This may also be the case in the Dogger/Liassic layer, although a limited contribution from advection cannot be totally excluded. By testing different scenarios of boundary conditions in diffusive models, it is proposed that the Dogger aquifer was first activated in the Early Miocene.  相似文献   

7.
Unconfined and triaxial compression tests were carried out to examine the behavior of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged soils, and cement with respect to initial water content. The stress-strain behavior of LWS are analyzed with varying initial water content and silt contents of dredged soils, cement ratio, and confined stress. As initial water contents increase, the compressibility index increases and the preconsolidation pressure was vice versa. As initial water contents increase, the slope of stress-strain curve in elastic zone increases and strain rate at failure decreases and the strain rate at failure was not changed by the being of foams. As initial water contents increase, a compressive strength of LWS decreases. The decrement ratio of compressive strength of LWS with foams increases as cement content increases and initial water contents decreases. The compressive strength increases as silt contents increases.  相似文献   

8.
Abstract

Surcharge preloading consolidation of soft soils often implements a layer of fully arranged aggregate materials. The volume of drained water is abundant at the early stage of consolidation, but it reduces at middle and later stages, during which the fully arranged sand blanket will be a waste. In this investigation, a concept of distributed sand blankets is proposed to save aggregate materials. A series of finite element analyses have been performed on layered soils with distributed sand blankets. A mixed type of drainage boundary is assigned to a representative model, where a half sand blanket is perfectly pervious and a half width of soil among sand blankets is impervious. From parametric study, it has been found that a pave ratio between sand blankets and the total soil width can be selected in a range of 40%–60%, which will save aggregates by approximately 50% but cause an increase of consolidation time by less than 10%. For a fixed pave ratio, more evenly spaced sand strips with smaller width should be employed to optimize the design. The effectiveness of distributed sand blankets is not influenced by the anisotropy of hydraulic conductivity, elastic modulus, Poisson’s ratio, and thickness in multiple soil layers.  相似文献   

9.
Marine deposit ground usually need significant improvement before the construction of civil structures in coastal areas due to the poor mechanical properties of soils. Dynamic compaction (DC) is a widely used technique in such projects. In this study, a case history of DC tests in sandy soils with a weak embedded layer is introduced. Two series of DC tests—single point tests and impact zone tests—were applied to test zones with similar geological conditions to investigate the effect of energy level on the depth of improvement (DI). The highest energy used is up to 15000 kN · m. Field measurements were conduct before and after DC in each series to validate the effectiveness of improvement, including crater settlement, excessive pore pressure, and acceleration measurement for single point tests, and the pressure meter and CPT tests for impact zone tests. For single point tests, the effectiveness of improvement increases as the energy level increases to 12000 kN · m. Further increase of compaction energy does not have an effect on settlement, pore pressure, or ground acceleration. For impact zone tests, the energy level does not show a positive correlation with the DI, mainly due to the presence of an embedded weak layer.  相似文献   

10.
张志忠  曹珂  吕胜华  周宇渤  印萍  李昂  高飞 《海洋学报》2022,44(12):109-115
利用三门湾海岸带最近施工完成的水文地质孔、工程地质孔和地下水碳(14C)测年以及前人的分析研究资料,对三门湾海岸带第四系分布、第四系承压含水层富水性和咸淡水资源分布、承压水年龄和可更新能力进行了深入研究。三门湾海岸带蛇盘滩涂围垦区第一承压含水层(组)富水性较好,绝大部分地区为淡水;宁海县长街镇区域承压水淡水资源总体呈“人”字型分布,北部的大湖?车岙港区域淡水主要分布在第一承压含水层(组)中,在大湖?下洋涂区域淡水主要分布在第二承压含水层(组)中。三门湾海岸带第四系承压水年龄普遍较老。蛇盘滩涂围垦区第一承压含水层地下水年龄为21 642~22 012 cal a BP,未受到后期海侵作用影响;长街下洋涂滩涂围垦区第二承压含水层地下水的年龄为35 052~45 439 cal a BP,部分地段受到后期海侵影响。在目前未开采利用条件下,承压水补给条件差、水资源更新性差。对于拟作为应急供水水源地靶区,应加强地下水资源管理。  相似文献   

11.
Dynamic compaction (DC) has been widely used for a variety of soil types and conditions in coastal area. However, as the ground water table is near the ground surface, a significant increase of pore water pressure is noticed after each impact, which results in local liquefaction and limits further drop effect. Consequently, to obtain effective compaction effects on saturated soils, it is essential for the evaluation of the liquefaction responses of soil medium caused by DC to determine the time delay between the drops and prevent ‘rubbery soil’. In this study, a numerical investigation on the liquefaction responses of saturated granular soils during DC is carried out using a coupled hydro-mechanical model. The developed model considers all the stages of DC involved in impact stage and consolidation stage. A new cap model for simulations of high strain rate behaviors of soils under DC is incorporated in the coupled hydro-mechanical model. Verification of the proposed model is performed against the previous test data and analytical result. Then, a series of parametric studies have been performed to examine the effects of the tamping energy level, hammer radius and permeability on liquefaction responses of saturated granular soils at several stages of DC. The numerical results demonstrate that the dimension of liquefaction zone is driven by the tamping energy level rather than the permeability, and strain rate has a significant effect on soil responses in DC.  相似文献   

12.
For the past four decades, the CPT has played a key role in onshore and offshore soil investigations. One of the main applications of cone penetration test (CPT) is the soil behavioral classification. Most of the developed methods for soil identification using CPT and CPTu (piezocone) data are well categorized for common soils, such as clays, silts, and sands. Soils with low resistance or more compressibility generally involve problems in geotechnical engineering practice and construction projects. Consequently, these unusual deposits require further evaluation and more detailed data. Five major groups of problematic soils including: liquefiable, sensitive, peaty, collapsible, and expansive soils have been considered in this study. One hundred and forty CPT and CPTu test records were collected from fifteen countries. Sixty-one of the records are related to difficult soils. A brief comparison is performed for currently used soil behavioral classification charts, such as by Campanella et al. (1985 Campanella, R. G., P. K. Robertson, D. Gillespie, and J. Greig. 1985. Recent developments in in-situ testing of soils. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, San Francisco, Vol. 2, 849–54. [Google Scholar]), Robertson (1990 Robertson, P. K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal 27 (1):15158. doi:10.1139/t90–014[Crossref], [Web of Science ®] [Google Scholar]), Jefferies and Davies (1991 Jefferies, M. G., and M. P. Davies. 1991. Soil classification using the cone penetration test: Discussion. Canadian Geotechnical Journal 28 (1):17376. doi:10.1139/t91–023[Crossref], [Web of Science ®] [Google Scholar]) and Eslami and Fellenius (1997 Eslami, A., and B. H. Fellenius. 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal 34 (6):886904. doi:10.1139/cgj-34–6-886[Crossref], [Web of Science ®] [Google Scholar]). Analysis based on CPT data indicates that a few commonly used charts recognize relatively well problematic deposits. However, further studies are needed to increase the accuracy and capability of methods. Existing charts have some problems due to the limitations of the nature of rectangular charts based on two axes. A new format of classification chart, i.e., triangular form containing cone tip resistance (qc), sleeve friction (fs), and pore pressure (u2) is proposed for soil identification which can be realized in practice. The proposed chart with more accuracy and less scattering of data than the previous charts is able to identify soil types particularly for deltaic soils.  相似文献   

13.
We use electrical resistivity data arrayed in a 2715 km2 region with 30 locations to identify the saline water intrusion zone in part of Cauvery deltaic region, offshore Eastern India. From this dataset we are able to derive information on groundwater quality, thickness of aquifer zone, structural and stratigraphic conditions relevant to groundwater conditions, and permeability of aquifer systems. A total of 30 vertical electrode soundings (VES) were carried out by Schlumberger electrode arrangement to indicate complete lithology of this region using curve matching techniques. The electrical soundings exhibited that H and HK type curves were suitable for 16 shallow locations, and QH, KQ, K, KH, QQ, and HA curves were fit for  other location. Low resistivity values suggested that saline water intrusion occurred in this region. According to final GIS map, most of the region was severely affected by seawater intrusion due to the use of over-exploitation of groundwater.The deteriorated groundwater resources in this coastal region should raise environmental and health concerns.  相似文献   

14.
We investigated marine and terrestrial environmental changes at the northern Japan margin in the northwestern Pacific during the last 23,000 years by analyzing biomarkers (alkenones, long-chain n-alkanes, long-chain n-fatty acids, and lignin-derived materials) in Core GH02-1030. The U 37K′-derived temperature in the last glacial maximum (LGM) centered at 21 ka was ∼10°C, which was 2°C lower than the core-top temperature (∼12°C). This small temperature drop does not agree with pollen evidence of a large air temperature drop (more than 4°C) in the Tokachi area. This disagreement might be attributed to a bias of U 37K′-derived temperature within 2.5°C by a seasonal shift in alkenone production. The U 37K′-derived temperature was significantly low during the last deglaciation. Because this cooling was significant in the Kuroshio-Oyashio transition zone, the temperature drops are attributable to the southward displacement of the Kuroshio-Oyashio boundary. Abundant lignin-derived materials, long-chain n-alkanes and long-chain n-fatty acids indicate a higher contribution of terrigenous organic matter from 17 to 12 ka. This phenomenon might have resulted from an enhanced coastal erosion of terrestrial soils due to marine transgression and/or an efficient inflow of higher plant debris to river waters from 17 to 12 ka.  相似文献   

15.
Based on the in-situ measurements,the impact of the marine hydrodynamics,such as wave and tide,in the rapidly deposited sediments consolidation process was studied.In the tide flat of Diaokou delta-lobe,one test pit was excavated.The seabed soils were dug and dehydrated,and then the powder of the soil was mixed with seawater to be fluid sediments.And an iron plate covered part of the test pit to cut off the effect of the marine hydrodynamics.By field-testing methods,like static cone penetration test (SPT) and vane shear test (VST),the variation of strength is measured as a function of time,and the marine hydrodynamics impact on the consolidation process of the sediments in the Yellow River estuary was studied.It is shown that the self-consolidated sediments’ strength linearly increases with the depth.In the consolidation process,in the initial,marine hydrodynamics play a decisive role,about 1.5 times as much as self-consolidated in raising the strength of the sea-bed soils,and with the extension of the depth the role of the hydrodynamics is reduced.In the continuation of the consolidation process,the trend of the surface sediments increased-strength gradually slows down under the water dynamics,while the sediments below are in opposite ways.As a result,the rapidly deposited silt presents a nonuniform consolidation state,and the crust gradually forms.The results have been referenced in studying the role of the hydrodynamics in the soil consolidation process.  相似文献   

16.
The sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide at low ionic strength (0.01 M ≤ I ≤ 0.09 M) was investigated over a wide range of pH (3.9 ≤ pH ≤ 7.1). YREE distribution coefficients, defined as iKFe = [MSi]T / (MT[Fe3+]S), where [MSi]T is the concentration of YREE sorbed by the precipitate, MT is the total YREE concentration in solution, and [Fe3+]S is the concentration of precipitated iron, are weakly dependent on ionic strength but strongly dependent on pH. For each YREE, the pH dependence of log iKFe is highly linear over the investigated pH range. The slopes of log iKFe versus pH regressions range between 1.43 ± 0.04 for La and 1.55 ± 0.03 for Lu. Distribution coefficients are well described by an equation of the form iKFe = (Sβ1[H+]− 1 + Sβ2[H+]− 2) / (SK1[H+] + 1), where Sβn are stability constants for YREE sorption by surface hydroxyl groups and SK1 is a ferric hydroxide surface protonation constant. Best-fit estimates of Sβn for each YREE were obtained with log SK1 = 4.76. Distribution coefficient predictions, using this two-site surface complexation model, accurately describe the log iKFe patterns obtained in the present study, as well as distribution coefficient patterns obtained in previous studies at near-neutral pH. Modeled log iKFe results were used to predict YREE sorption patterns appropriate to the open ocean by accounting for YREE solution complexation with the major inorganic YREE ligands in seawater. The predicted log iKFe′ pattern for seawater, while distinctly different from log iKFe observations in synthetic solutions at low ionic strength, is in good agreement with results for natural seawater obtained by others.  相似文献   

17.
Abstract

Vacuum preloading with plastic vertical drains has been applied widely to accelerating consolidation of dredger fills. As a result of nonlinear variations in permeability and compression during the process of dredger fill consolidation, an axisymmetric consolidation method for dredger fill treatment using PVD with vacuum is proposed with varied Ru. The effects of Cc/Ck and the loading ratio on the proposed method are discussed. It is found that the difference between the traditional method and proposed method is obvious in the case of large loading ratio (such as dredger fill treated with vacuum preloading). The degree of consolidation in the early phase of consolidation obtained using the proposed method was less than that obtained using the traditional method and the degree of consolidation in the later phase of consolidation obtained using the modified expression was larger than that obtained using the traditional method, as Cc/Ck?<?1. However, opposite trends were observed when Cc/Ck?>?1, the proposed method was closer to the actual situation. The applicability of the proposed method was verified by laboratory and field tests. For the consolidation of dredger fill with high water content, we recommend the adoption of the proposed method for calculating the degree of consolidation.  相似文献   

18.
Records of four species of Delphinidae, Delphinus delphis, Lissodelphis peroni, Lagenorhynchus obscurus, and Lagenorhynchus cruciger in waters to the east and south‐east of New Zealand are discussed in relation to surface temperatures.

In this region D. delphis appears to be largely confined north of the Subtropical Convergence and a minimum surface temperature of about 14°c, and near New Zealand from Hawke Bay southward in the warm water of the East Cape Current; L. peroni to the Subtropical Convergence and the subantarctic water to the south of it, between surface temperatures of 9°c and 16°c; L. obscurus to the immediate vicinity of the Subtropical Convergence and surface temperatures in summer of about 14° to 15°c, and L. cruciger across the Antarctic Convergence region, in a surface temperature range of 2° to 9°c.  相似文献   

19.
We measured dissolved isoprene (2-methyl-1,3-butadiene; C5H8) concentrations in a broad area of the southern Indian Ocean and in the Indian sector of the Southern Ocean from 35°S to 64°S and from 37°E to 111°E during austral summer 2010–2011. Isoprene concentrations were continuously measured by use of a proton-transfer-reaction mass spectrometer combined with a bubbling-type equilibrator. Concentrations of isoprene and its emission flux throughout the study period ranged from 0.2 to 395 pmol L?1 and from 181 to 313 nmol m?2 day?1, respectively, the averages being generally higher than those of previous studies. Although we found a significant linear positive relationship between isoprene and chlorophyll-a concentrations (r 2 = 0.37, n = 36, P < 0.001), the correlation coefficient was lower than previously reported. In contrast, in the high-latitude area (>53°S) we identified a significant negative correlation (r 2 = 0.59, n = 1263, P < 0.001) between isoprene and the temperature-normalized partial pressure of carbon dioxide (n-pCO2), used as an indicator of net community production in this study. This suggests that residence times and factors controlling variations in isoprene and n-pCO2 are similar within a physically stable water column.  相似文献   

20.
A boundary integral equation method (BIEM) model and three differently formulated finite element method (FEM) models were implemented to explore the spatial and temporal patterns in marsh pore water seepage that each generated. The BIEM model is based on the Laplace equation coupled to a dynamic free-surface condition that assumes that, as the water-table changes, the aquifer instantaneously loses or gains an amount of water equal to the change in head times the specific yield. The FEM models all implement a simplified Richards equation that allows gradual desaturation or resaturation and thus flow in both the saturated and unsaturated zones of the aquifer. Two of the FEM models are based on the governing equation for the USGS model SUTRA and thus take into account fluid and aquifer compressibility. One of these was modified to take into account the effect of tidal loading on the total stress, which is assumed to be constant in the derivation of the original version of SUTRA. The third FEM model assumes that neither the fluid or aquifer matrix is compressible so that changes in storage are due solely to changes in saturation. The unmodified SUTRA model generated instantaneous boundary fluxes that were up to two orders of magnitude greater, and spatially more uniform, than those of the other models. The FEM model without compressibility generated spatial and temporal patterns of the boundary fluxes very similar to those produced by the BIEM model. The SUTRA model with the tidal stress modification gave fluxes similar in magnitude to the BIEM and no compressibility models but with distinctly different distributions in space and time. These results indicate that accurate simulation of seepage from marsh soils is highly sensitive to aquifer compressibility and to proper formulation of the effect of tidal loading on the total stress in the aquifer. They also suggest that accurate simulation may require total stress correction not only for tidal loading but for changes in the water table as well. Finally, to aid the development of methods for the measurement of compressibility, we present a schematic, pore-scale model to illustrate the factors that may govern the compressibility of marsh soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号