首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.  相似文献   

2.
Hydrographic data from National Oceanographic Data Center (NODC) and Responsible National Oceanographic Data Centre (RNODC) were used to study the seasonal variability of the mixed layer in the central Bay of Bengal (8–20°N and 87–91°E), while meteorological data from Comprehensive Ocean Atmosphere Data Set (COADS) were used to explore atmospheric forcing responsible for the variability. The observed changes in the mixed-layer depth (MLD) clearly demarcated a distinct north–south regime with 15°N as the limiting latitude. North of this latitude MLD remained shallow (∼20 m) for most of the year without showing any appreciable seasonality. Lack of seasonality suggests that the low-salinity water, which is perennially present in the northern Bay, controls the stability and MLD. The observed winter freshening is driven by the winter rainfall and associated river discharge, which is advected offshore under the prevailing circulation. The resulting stratification was so strong that even a 4 °C cooling in sea-surface temperature (SST) during winter was unable to initiate convective mixing. In contrast, the southern region showed a strong semi-annual variability with deep MLD during summer and winter and a shallow MLD during spring and fall intermonsoons. The shallow MLD in spring and fall results from primary and secondary heating associated with increased incoming solar radiation and lighter winds during this period. The deep mixed layer during summer results from two processes: the increased wind forcing and the intrusion of high-salinity waters of Arabian Sea origin. The high winds associated with summer monsoon initiate greater wind-driven mixing, while the intrusion of high-salinity waters erodes the halocline and weakens the upper-layer stratification of the water column and aids in vertical mixing. The deep MLD in the south during winter was driven by wind-mixing, when the upper water column was comparatively less stable. The deep MLD between 15 and 17°N during March–May cannot be explained in the context of local atmospheric forcing. We show that this is associated with the propagation of Rossby waves from the eastern Bay. We also show that the nitrate and chlorophyll distribution in the upper ocean during spring intermonsoon is strongly coupled to the MLD, whereas during summer river runoff and cold-core eddies appear to play a major role in regulating the nutrients and chlorophyll.  相似文献   

3.
近年来的现场观测和理论研究发现, 次中尺度现象广泛存在于上层海洋, 其产生与锋生作用及混合层斜压不稳定存在密切联系。本文利用高分辨率的数值模拟结果并结合动力学及能量诊断分析, 对黑潮延伸体海域次中尺度过程的季节变化进行了探讨。探讨结果表明, 黑潮延伸体海域次中尺度过程具有冬季最强, 春季和秋季次之, 夏季最弱的显著季节变化特征。基于冬、夏季次中尺度能量源的诊断可以看到, 这些季节变化特征主要与上层海洋的斜压不稳定和锋生作用有关。冬季, 黑潮延伸体海域的中尺度能量较弱, 但次中尺度过程在季节尺度上表现最为活跃, 这主要与混合层斜压不稳定的作用有关; 夏季, 黑潮延伸体海域的混合层较浅, 次中尺度过程较弱, 但中尺度涡旋活跃, 中尺度流场变形引起的锋生作用对夏季次中尺度现象的产生具有重要影响。在次中尺度能量的季节变化方面, 冬季次中尺度过程从中尺度过程汲取能量的速率远高于夏季, 这是冬季次中尺度过程比夏季更为活跃的主要原因。本文研究结果有助于加深对黑潮延伸体海域次中尺度过程季节性变化及其动力机制的理解。  相似文献   

4.
The seasonal cycle of submesoscale flows in the upper ocean is investigated in an idealised model domain analogous to mid-latitude open ocean regions. Submesoscale processes become much stronger as the resolution is increased, though with limited evidence for convergence of the solutions. Frontogenetical processes increase horizontal buoyancy gradients when the mixed layer is shallow in summer, while overturning instabilities weaken the horizontal buoyancy gradients as the mixed layer deepens in winter. The horizontal wavenumber spectral slopes of surface temperature and velocity are steep in summer and then shallow in winter. This is consistent with stronger mixed layer instabilities developing as the mixed layer deepens and energising the submesoscale. The degree of geostrophic balance falls as the resolution is made finer, with evidence for stronger non-linear and high-frequency processes becoming more important as the mixed layer deepens. Ekman buoyancy fluxes can be much stronger than surface cooling and are locally dominant in setting the stratification and the potential vorticity at fronts, particularly in the early winter. Up to 30% of the mixed layer volume in winter has negative potential vorticity and symmetric instability is predicted inside mesoscale eddies as well as in the frontal regions outside of the vortices.  相似文献   

5.
南海是西太平洋最大的边缘海, 由于受季风影响显著以及北部海域的黑潮入侵, 其动力环境复杂多变, 次中尺度过程丰富, 且在空间上和时间上存在多变性。文章基于高分辨率数值模式的结果, 通过对次中尺度动力参数的分析, 对比讨论了南海北部、中部、西部和南部海域4个典型子区域上层海洋次中尺度过程的空间差异、季节变化、影响深度、影响因素等问题。研究发现各区域季节性变化特征和机制有所不同: 北部海域受冬季风和黑潮入侵影响, 冬季次中尺度的混合层不稳定较强; 中部海域同样表现为“冬强夏弱”; 西部海域受夏季风影响显著, 夏季次中尺度过程更为活跃; 而南部海域主要受岛屿地形影响较大, 容易产生地形尾涡, 季节性特征不明显。统计分析表明, 次中尺度过程往往表现出强正相对涡度与高应变特征, 在表层更容易出现负位涡, 流体稳定性较差。此外, 文章从能量学角度对次中尺度过程的主要能量来源、控制因素等进行了讨论。  相似文献   

6.
Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification were studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification is almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.  相似文献   

7.
南海东北部亚中尺度过程时空分布特征   总被引:6,自引:3,他引:3  
基于高分辨率模型2009-2012年的模拟结果,本文对南海东北部亚中尺度过程的时空分布特征进行了研究。模拟结果表明,南海东北部上层广泛存在着相对涡度接近于局地行星涡度的亚中尺度过程。统计结果发现,亚中尺度过程的相对涡度的分布具有着明显的非对称性,即正涡度明显强于负涡度。这意味着相比于负涡度,具有正涡度的亚中尺度过程要更为活跃,而这主要是由离心不稳定导致。同时,亚中尺度过程在时间分布上表现出明显的冬强夏弱的季节变化特征。通过对该海区亚中尺度过程可能生成机制的分析发现,该季节变化与流场拉伸和混合层的厚度有着密切关系,冬季更强的流场拉伸和更深的混合层有利于通过锋生过程和混合层不稳定为亚中尺度过程生成提供更多的能量。  相似文献   

8.
Submesoscale processes in marginal seas usually have complex generating mechanisms, highly dependent on the local background flow and forcing. This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea (SCS) and the different dynamical regimes for sub-regions. The spatial and seasonal variations of vertical vorticity, horizontal convergence, lateral buoyancy gradient, and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions, the northern region near the Luzon Strait (R1), the middle ocean basin (R2), the western SCS (R3), and the southern SCS (R4). The results suggest that the SCS submesoscale processes are highly heterogeneous in space, with different seasonalities in each sub-region. The submesoscale activities in the northern sub-regions (R1, R2) are active in winter but weak in summer, while there appears an almost seasonal anti-phase in the western region (R3) compared to R1 and R2. Interestingly, no clear seasonality of submesoscale features is shown in the southern region (R4). Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions. Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions. All these results suggest that the sub-regions have different regimes for submesoscale processes, e.g., Kuroshio intrusion (R1), monsoon modulation (R2), frontal effects (R3), topography wakes (R4).  相似文献   

9.
Temporal and spatial variability of phytoplankton pigment concentrations in the Japan Sea are described, using monthly mean composite images of the Coastal Zone Color Scanner (CZCS). In order to describe the seasonal changes of pigment concentration from the results of the empirical orthogonal function (EOF) analysis, we selected four areas in the south Japan Sea. The pigment concentrations in these areas show remarkable seasonal variations. Two annual blooms appear in spring and fall. The spring bloom starts in the Japan Sea in February and March, when critical depth (CRD) becomes equal to mixed layer depth (MLD). The spring bloom in the southern areas (April) occurs one month in advance of that in the northern areas (May). This indicates that the pigment concentrations in the southern areas may increase rapidly in comparison with the northern areas since the water temperature increases faster in spring in the southern than in the northern areas. The fall bloom appears first in the southwest region, then in the southeast and northeast regions, finally appearing in the northwest region. Fall bloom appears in November and December when MLD becomes equal to CRD. The fall bloom can be explained by deepening of MLD in the Japan Sea. The pigment concentrations in winter are higher than those in summer. The low pigment concentrations dominate in summer.  相似文献   

10.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   

11.
The seasonal variability of surface chlorophyll in the northern Humboldt Current System is studied using satellite data, in situ observations and model simulations. The data show that surface chlorophyll concentration is highest in austral summer and decreases during austral winter, in phase opposition with coastal upwelling intensity. A regional model coupling ocean dynamics and biogeochemical cycles is used to investigate the processes which control this apparently paradoxical seasonal cycle. Model results suggest that the seasonal variability of the mixed layer depth is the main controlling factor of the seasonality. In winter, the mixed layer deepening reduces the surface chlorophyll accumulation because of a dilution effect and light limitation. In summer, biomass concentrates near the surface in the shallow mixed layer and nitrate limitation occurs, resulting in a biomass decrease in the middle of summer. Intense blooms occur during the spring restratification period, when winter light limitation relaxes, and during the fall destratification period, when the surface layer is supplied with new nutrients. Model sensitivity experiments show that the seasonal variations in insolation and surface temperature have little impact on the surface chlorophyll variability.  相似文献   

12.
本文通过理想化的外部强迫以及海洋站点实测数据驱动普林斯顿海洋模式来研究海洋热力学效应和斯托克斯漂流对上混合层数值模拟的影响。在Mellor-Yamada湍流闭合方案中,经常出现夏季海表面温度偏暖和混合层深度偏浅的模拟误差。实验表明,斯托克斯漂流在冬季和夏季均能增强湍流动能,加深混合层深度。这种效应可以改善夏季的模拟结果,但与观测数据相比,将增大冬季混合层深度的模拟误差。斯托克斯漂流可以通过增强湍动能来加深混合层深度。结果表明,将斯托克斯漂流与冷皮层和暖层对上部混合层的热效应相结合,可以正确地模拟混合层深度。在夏季,海洋冷皮层和暖层通过“阻挡结构”和双温跃层结构模拟出更真实的上混合层变化。在冬季,海洋热力学效应通过增强上层海洋层结平衡了斯托克斯漂流的影响,并且由斯托克斯漂流引起的过度混合被校正。  相似文献   

13.
Seasonal and interannual variations of the mixed layer properties in the Antarctic Zone (AZ) south of Tasmania are described using 7 WOCE/SR3 CTD sections and 8 years of summertime SURVOSTRAL XBT and thermosalinograph measurements between Tasmania and Antarctica. The AZ, which extends from the Polar Front (PF) to the Southern Antarctic Circumpolar Current Front (SACCF), is characterized by a 150 m deep layer of cold Winter Water (WW) overlayed in summer by warmer, fresher water mass known as Antarctic Surface Water (AASW). South of Tasmania, two branches of the PF divide the AZ into northern and southern zones with distinct water properties and variability. In the northern AZ (between the northern and southern branches of the PF), the mixed layer depth (MLD) is fairly constant in latitude, being 150 m deep in winter and around 40–60 m in summer. In the southern AZ, the winter MLD decreases from 150 m at the S-PF to 80 m at the SACCF and from 60 to 35 m in summer. Shallower mixed layers in the AZ-S are due to the decrease in the wind speed and stronger upwelling near the Antarctic Divergence. The WW MLD oscillates by ±15 m around its mean value and modest interannual changes are driven by winter wind stress anomalies.The mixed layer is on annual average 1.7 °C warmer, 0.06 fresher and 0.2 kg m−3 lighter in the northern AZ than in the southern AZ. The Levitus (1998) climatology is in agreement with the observed mean summer mixed layer temperature and salinity along the SURVOSTRAL line but underestimates the MLD by 10–20 m. The winter MLD in the climatology is also closed to that observed, but is 0.15 saltier than the observations along the AZ-N of the SR3 line. MLD, temperature and density show a strong seasonal cycle through the AZ while the mixed layer salinity is nearly constant throughout the year. During winter, the AZ MLD is associated with a halocline while during summer it coincides with a thermocline.Interannual variability of the AZ summer mixed layer is partly influenced by large scale processes such as the circumpolar wave which produces a warm anomaly during the summer 1996–1997, and partly by local mechanisms such as the retroflection of the S-PF which introduces cold water across the AZ-N.  相似文献   

14.
The mean seasonal cycle of mixed layer depth (MLD) in the extratropical oceans has the potential to influence temperature, salinity and mixed layer depth anomalies from one winter to the next. Temperature and salinity anomalies that form at the surface and spread throughout the deep winter mixed layer are sequestered beneath the mixed layer when it shoals in spring, and are then re-entrained into the surface layer in the subsequent fall and winter. Here we document this ‘re-emergence mechanism’ in the North Pacific Ocean using observed SSTs, subsurface temperature fields from a data assimilation system, and coupled atmosphere–ocean model simulations. Observations indicate that the dominant large-scale SST anomaly pattern that forms in the North Pacific during winter recurs in the following winter. The model simulation with mixed layer ocean physics reproduced the winter-to-winter recurrence, while model simulations with observed SSTs specified in the tropical Pacific and a 50 m slab in the North Pacific did not. This difference between the model results indicates that the winter-to-winter SST correlations are the result of the re-emergence mechanism, and not of similar atmospheric forcing of the ocean in consecutive winters. The model experiments also indicate that SST anomalies in the tropical Pacific associated with El Niño are not essential for re-emergence to occur.The recurrence of observed SST and simulated SST and SSS anomalies are found in several regions in the central North Pacific, and are quite strong in the northern (>50°N) part of the basin. The winter-to-winter autocorrelation of SSS anomalies exceed those of SST, since only the latter are strongly damped by surface fluxes. The re-emergence mechanism also has a modest influence on MLD through changes in the vertical stratification in the seasonal thermocline.  相似文献   

15.
过去对南大洋的研究受限于长期观测的缺乏,而现在地转海洋学实时观测阵(Arrayfor Real-timeGeostrophicOceanography,Argo)项目自开始以来持续提供了高质量的温度盐度观测,使系统地研究南大洋海洋上层结构成为可能。本研究使用2000—2018年的Argo浮标观测数据,分析了南大洋混合层深度(Mixed Layer Depth, MLD)的时空分布特征。结果表明:南大洋混合层存在明显的季节变化,冬春两季MLD在副南极锋面北侧达到最高值并呈带状分布,夏秋两季由于海表加热导致混合层变浅,季节变化幅度达到400m以上;在年际尺度上,MLD受南半球环状模(Southern HemisphereAnnularMode,SAM)调制,呈现纬向不对称空间分布特征,这与前人结果一致;本文指出在所研究时段,南大洋混合层在90°E以东,180°以西有加深趋势,而在60°W以西,180°以东有变浅趋势,显示出偶极子分布特征,并且这种趋势特征主要是风场的作用。  相似文献   

16.
The stratification in the Northern Gulf of Eilat/Aqaba follows a well-known annual cycle of well-mixed conditions in winter, surface warming in spring and summer, maximum vertical temperature gradient in late summer, and erosion of stratification in fall. The strength and structure of the stratification influences the diverse coral reef ecosystem and also affects the strength of the semi-diurnal tidal currents. Long-term (13 months) moored thermistor data, combined with high temporal and vertical resolution density profiles in deep water, show that transitions from summer to fall and winter to spring/summer occur in unpredictable, pulses and are not slow and gradual, as previously deduced from monthly hydrographic measurements and numerical simulations forced by monthly climatologies. The cooling and deepening of the surface layer in fall is marked by a transition to large amplitude, semi-diurnal isotherm displacements in the stratified intermediate layer. Stratification is rebuilt in spring and summer by intermittent pulses of warm, buoyant water that can increase the upper 100–150 m by 2 °C that force surface waters down 100–150 m over a matter of days. The stratification also varies in response to short-lived eddies and diurnal motions during winter. Thus, the variability in the stratification exhibits strong depth and seasonal dependence and occurs over range of timescales: from tidal to seasonal. We show that monthly or weekly single-cast hydrographic data under-samples the variability of the stratification in the Gulf and we estimate the error associated with single-cast assessments of the stratification.  相似文献   

17.
A monthly mean time series of the temperature profile in the recirculation gyre south of the Kuroshio Extension has been produced for the period 1971–2007 to examine temporal variations of the winter mixed layer. The winter mixed layer depth (MLD) shows both interannual and decadal variations and is significantly correlated with variation of the mean net surface heat flux in late autumn to early winter. There is also a close relation with the strength of pre-existing subsurface stratification, measured as vertical temperature gradients in the preceding summer. Linear multiple regression analysis shows that a significant fraction of the variations in the winter MLD is explained by the surface heat flux and the strength of the stratification. The contribution of the two factors is comparable.  相似文献   

18.
南海北部深水区东西构造差异性及其动力学机制   总被引:5,自引:1,他引:4  
This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea(SCS) particularly during recent five years. The submesoscale processes are defined according to both spatial and dynamic scales, and divided into four subcategories as submesoscale waves, submesoscale vortexes, submesoscale shelf processes, and submesoscale turbulence. The major new findings are as follows.(1) Systematic mooring observations provide new insights into the solitary waves(ISWs) and the typhoon-forced near-inertial waves(NIWs), of which a new type of ISWs with period of 23 h was observed in the northern SCS(NSCS), and the influences of background vorticity, summer monsoon onset, and deep meridional overturning circulation on the NIWs, as well as nonlinear wave-wave interaction between the NIWs and internal tides, are better understood. On the other hand, satellite altimeter sea surface height data are used to reveal the internal tide radiation patterns and provide solid evidence for that the ISWs in the northeastern SCS originate from the Luzon Strait.(2) Submesoscale offshore jets and associated vortex trains off the Vietnam coast in the western boundary of the SCS were observed from satellite chlorophyll concentration images. Spiral trains with the horizontal scale of 15–30 km and the spacing of 50–80 km were identified.(3) 3-D vertical circulation in the upwelling region east of Hainan Island was theoretically analyzed. The results show that distribution patterns of all the dynamic terms are featured by wave-like structures with horizontal wavelength scale of 20–40 km.(4) Numerical models have been used for the research of submesoscale turbulence. Submesoscale vertical pump of an anticyclonic eddy and the spatiotemporal features of submesoscale processes in the northeastern SCS are well modeled.  相似文献   

19.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   

20.
基于2004—2018年Argo (Array for Real-Time Geostrophic Oceanography)浮标观测的温度、盐度数据, 利用经验正交函数(EOF)分析和小波分析等方法对北印度洋(40°—105°E, 5°S—25°N)障碍层时空分布特征进行分析。结果显示: 北印度洋的东部常年存在障碍层, 而西部障碍层出现的概率相对较低; 较厚的障碍层出现在阿拉伯海东南部(67°—75°E, 3°—12°N)、孟加拉湾(82°—93°E, 11°—20°N)和赤道东印度洋(81°—102°E, 4°S—3°N)。阿拉伯海东南部和孟加拉湾障碍层厚度以年变化为主, 且呈同位相变化, 均为冬季最大, 夏季最小。赤道东印度洋区域则主要呈现半年周期变化, 在夏季和冬季各出现一次峰值。进一步分析表明, 孟加拉湾和赤道东印度洋障碍层厚度主要受等温层深度变化影响, 混合层深度变化对障碍层厚度变化的影响相对较小; 阿拉伯海障碍层厚度同时受等温层深度变化和混合层深度变化影响, 其中等温层深度变化对其影响更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号