首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-series data from sediment trap moorings intermittently deployed during 1991–1999 show that the fluxes of biogenic material (carbonate, opal and organic matter, including amino acids) and other related parameters are temporally and spatially distinct across the Western Pacific Warm Pool (WPWP). These variations resulted from the El Niño and La Niña conditions, which alternately prevailed over the equatorial Pacific Ocean during the mooring deployments. The westernmost WPWP (a hemipelagic region) recorded relatively high average total mass and amino acid fluxes during the El Niño event. This was in sharp contrast to the eastern part of the WPWP (oligotrophic and weak upwelling regions) which recorded higher flux values during the La Niña event. Settling particulate organic matter was rich in labile components (amino acids) during La Niña throughout the study area. Relative molar ratios of aspartic acid to β-alanine together with relative molar content of non-protein amino acids β-alanine and γ-aminobutyric acid) suggested that organic matter degradation was more intense during La Niña relative to that during El Niño in the WPWP. This study clearly shows that during an El Niño event the well documented decrease in export flux in the easternmost equatorial Pacific is accompanied by a significant increase in export flux in the westernmost equatorial Pacific Ocean.  相似文献   

2.
A time-series sediment trap was deployed from October 2007 to May 2011 in the western subtropical Pacific with the aim of understanding the seasonal and inter-annual variability on particle flux in response to El Niño-Southern Oscillation (ENSO) events. Total mass fluxes varied from 3.04 mg m−2 day−1 to 31.1 mg m−2 day−1, with high fluxes during February–April and low fluxes during other months. This seasonal variation was also characterized by a distinct change in the CaCO3 flux between the two periods. The marked increase in particle flux during February–April may be attributed to enhanced biological productivity in surface waters caused by strong wind-driven mixing in response to the western North Pacific monsoon system. The 2009/10 strong El Niño was accompanied by a significant reduction in particle flux, whereas the La Niña had no recognizable effect on particle flux in the subtropical Pacific. In particular, in the mature phase of the 2009/10 strong El Niño, the fluxes of organic carbon and biogenic silica decreased by 70–80% compared with those during the normal period, implying that the El Niño acted to suppress biological productivity in surface waters. The suppression of biological productivity during the 2009/10 strong El Niño is attributed to the decrease in precipitation due to the shift in the western Pacific warm pool. This finding is opposite that of other studies of the western equatorial Pacific, where El Niño events were observed to result in an increase in biological productivity and particle flux. The difference in particle flux between the western equatorial and subtropical Pacific is attributed to the regional differences in oceanic and atmospheric circulation systems generated by the strong El Niño.  相似文献   

3.
This study reveals the physical backgrounds of the geometric centroid and the thermal centroid of the Western Pacific Warm Pool (WPWP) and points out their differences. The geometric centroid (actually a very close approximation to the mass centroid) anomaly of the surface WPWP correlates more closely with the Niño-3 region sea surface temperature anomaly (Niño-3 SSTA, an important indicator of El Niño/La Niña events) than the surface thermal centroid. Taking the WPWP depth (or heat storage) into account, the “real” mass or thermal centroid of the WPWP might correlate better with the El Niño/Southern Oscillation (ENSO) signals.  相似文献   

4.
Using the high-resolution Hybrid Coordinate Ocean Model and the Navy Coupled Ocean Data Assimilation Global 1/12° Analysis (GLBa0.08), and the Objectively Analyzed Air–Sea Fluxes and the International Satellite Climatology Cloud Project products, we investigated the seasonal and interannual evolutions of heat budget, including the pseudo-heat content change, the net air–sea heat flux and the eddy heat transport (EHT), based on the time-dependent heat budget analysis in the western Pacific warm pool (WPWP). The results show that the pseudo-heat content change has significant semi-annual variation, which peaks in April–May and September. There is strong positive feedback between EHT and the net air–sea heat flux. EHT is important in balancing the sea surface heat flux into the WPWP. The seasonal EHT variability is dominated by its meridional component. On the interannual time scale, the zonal and vertical components of EHT show comparable amplitudes with the meridional one. The observed net air–sea heat flux in the WPWP is highly correlated with EHT and the pseudo-heat content change on the interannual time scale. The net air–sea heat flux leads the pseudo-heat content change by about half a month and leads EHT by about one month. The variations of the air–sea heat flux and EHT are connected to the El Niño Southern Oscillation events: during the development of El Niño (La Niña) events, the warm pool expanded eastward (retreated westward), the net air–sea surface flux into the WPWP increased (decreased) and EHT enhanced (weakened) significantly.  相似文献   

5.
Four year-long time-series sediment trap experiments were conducted along the equatorial Pacific Ocean in order to understand the biogeochemistry of particulate organic matter (POM) on the basis of amino acid (AA) and hexosamine (HA) compositions of the settling particles. Total mass flux in the study area varied over 4 orders of magnitude without a common seasonality among all trap sites. Planktonic blooms were apparent in terms of total mass and AA fluxes at the easternmost end of the Niño-4 region. AA fluxes closely followed the total mass flux profiles, suggesting that increased particle flux delivered a greater amount of labile OM to the deep ocean. A labile OM index (LI)-based classification showed that during the El Niño conditions in 2002, the eastern side of the equatorial Pacific transported relatively more labile OM than the western equatorial Pacific. An overall change in AA and HA composition of settling particles could be revealed with the help of discriminant analysis, suggesting that settling particles during El Niño were compositionally different from those settling during La Niña condition in the equatorial Pacific.  相似文献   

6.
热带太平洋第二类El Nio事件及其对中国气候的影响   总被引:1,自引:0,他引:1  
基于热带太平洋次表层海温资料,分析了热带太平洋第二类El Nio事件海温异常的分布特征及其形成机制,讨论了与经典El Nio事件、El Nio Modoki、WP(西太平洋暖池)及CT(冷舌)El Nio事件之间的关系,揭示了第二类El Nio事件对中国降水的影响,得到以下结论。(1)第二类El Nio事件表征为热带太平洋次表层海温异常第三模态,占总方差贡献的4.7%。在海洋表面层,第二类El Nio事件暖期赤道东太平洋为沿赤道西伸的冷舌,热带中西太平洋为环绕冷舌的马蹄型大范围暖区。该型具11a和30~40a年代际振荡及3~4a年际变率,峰值多出现在春季。第二类El Nio事件是热带太平洋异常海面风应力场和赤道两侧的风应力旋度共同作用的结果,在赤道东印度洋-中西太平洋与赤道东太平洋-南美洲上空出现以反号垂直运动为特征的异常Walker环流。(2)El Nio Modoki与第二类El Nio事件有密切关系,它实质上是第二类El Nio事件次表层海温与近海面大气相互作用的结果,捕捉了第二类El Nio事件的主要信息。(3)第二类El Nio事件对中国春季及夏初降水有一定影响。在事件暖期,东海地区存在一个显著的异常反气旋性环流,其南侧的中国南方地区盛行异常东北气流,水汽来源减少,导致该地区少雨,其西侧的异常偏南气流北上直达华北地区,异常多水汽向北输送,并与北方的偏北流场相遇,导致该地区降水偏多。在第二类El Nio事件冷期相反。本文结果还指出,WP与CT El Nio事件是由经典El Nio事件第一模态与El Nio Modoki事件组合而成,它们不是独立的El Nio类型。此外,还讨论了夏半年El Nio事件对大气环流影响的物理过程。  相似文献   

7.
ENSO-induced interannual variability in the southeastern South China Sea   总被引:5,自引:0,他引:5  
In this study, El Niño Southern Oscillation (ENSO)-induced interannual variability in the South China Sea (SCS) is documented using outputs from an eddy-resolving data-assimilating model. It is suggested that during an El Niño (La Niña) event, off-equatorial upwelling (downwelling) Rossby waves induced by Pacific equatorial wind anomalies impinge on the Philippine Islands and excite upwelling (downwelling) coastal Kelvin waves that propagate northward along the west coast of the Philippines after entering the SCS through the Mindoro Strait. The coastal Kelvin waves may then induce negative (positive) sea level anomalies in the southeastern SCS and larger (smaller) volume transport through the Mindoro and Luzon Straits during an El Niño (La Niña) event.  相似文献   

8.
气候模式FIO-ESM对2015/16年厄尔尼诺的预测   总被引:1,自引:0,他引:1  
Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/98 which brought huge influence on the whole world. In this study, based on the Ensemble Adjusted Kalman Filter(EAKF)assimilation scheme and First Institute of Oceanography-Earth System Model(FIO-ESM), the assimilation system is setup, which can provide reasonable initial conditions for prediction. And the hindcast results suggest the skill of El Ni?o-Southern Oscillation(ENSO) prediction is comparable to other dynamical coupled models. Then the prediction for 2015/16 El Ni?o by using FIO-ESM is started from 1 November 2015. The ensemble results indicate that the 2015/16 El Ni?o will continue to be strong. By the end of 2015, the strongest strength is very like more than 2.0°C and the ensemble mean strength is 2.34°C, which indicates 2015/16 El Ni?o event will be very strong but slightly less than that of 1997/98 El Ni?o event(2.40°C) calculated relative a climatology based on the years1992–2014. The prediction results also suggest 2015/16 El Ni?o event will be a transition to ENSO-neutral level in the early spring(FMA) 2016, and then may transfer to La Ni?a in summer 2016.  相似文献   

9.
A five-component (phytoplankton, zooplankton, ammonium, nitrate, detritus) physical–biological model was developed to investigate the effects of physical processes on daily to interannual time scales, on the lower trophic levels of the central equatorial Pacific. Many of the biological processes included in the ecosystem model respond to environmental fluctuations with time scales between 1 and 10 d, which are not typically resolved by basin- to global-scale circulation models. Therefore, the equatorial Pacific ecosystem model is forced using daily information (solar radiation, velocity, temperature) from the Tropical Atmosphere Ocean (TAO) mooring array. The ecosystem model also requires vertical velocity information which necessitated the development of a method for computing daily vertical velocities from the TAO array. Much of the variability in primary production, plankton and nutrient concentrations observed in 1992 during the US Joint Global Ocean Flux Study Equatorial Pacific Process Study time-series cruises (TS1 and TS2), is well reproduced in the model simulations. Simulations demonstrate that lower primary productivities during TS1 as compared to TS2 result from the deeper thermocline that persisted during TS1 as a result of El Niño conditions; however, because of the simultaneous reduction in grazing pressure, simulated chlorophyll levels are similar for these two time periods. Simulations of this single-species ecosystem model successfully reproduce data collected both during and after the El Niño, suggesting that species composition changes are not of first-order importance when examining the effects of the 1991–92 El Niño on the equatorial Pacific ecosystem. A 60–70% increase in chlorophyll concentration and a 400% increase in the chlorophyll contribution by diatoms was associated with the passage of a tropical instability wave (20-d period) across the study site during TS2. This period of high chlorophyll concentration and diatom abundance coincided temporally with strong northward velocities and strong downwelling velocities in the upper euphotic zone. Observations and simulations suggest that this increase in chlorophyll concentration and change in species composition not only results from in situ diatom growth stimulated by increased iron concentrations, but also results from the advection of diatoms toward the convergent front located along the leading (western) edge of the instability wave. Equatorially trapped internal gravity waves can also stimulate in situ phytoplankton growth as high-frequency vertical motions introduce limiting micronutrients, such as iron, into the euphotic zone. Because iron can be taken up by the picoplankton on time scales much shorter than the wave period (6–8 days), these waves may provide a mechanism for effecting a large flux of iron into the euphotic zone. Exclusion of these high-frequency motions results in an iron flux to the euphotic zone that may be underestimated by more than 30%.  相似文献   

10.
The impact of quasi-decadal (QD: 8 to 18 years) variability in the tropical Pacific on ENSO events is investigated. It is found that there is a significant difference in the behavior of ENSO events between the phases of positive and negative anomalies of the QD Niño-3.4 index. During the period of negative QD-scale Niño-3.4 index, ENSO events, especially La Niña events, occur more frequently, and larger amplitudes of thermal anomalies related to El Niño events appear over the central to eastern equatorial Pacific. Furthermore, propagations of upper ocean heat content anomaly and a phase relationship between upper ocean heat content and Niño-3 index in the equatorial Pacific, which have been pointed out by previous studies, are clearly detected during the period of negative QD Niño-3.4 index.  相似文献   

11.
西北太平洋柔鱼冬春生群体栖息地的变化研究   总被引:4,自引:1,他引:3  
余为  陈新军 《海洋学报》2018,40(3):86-94
柔鱼(Ommastrephes bartramii)是短生命周期鱼种,其适宜栖息地范围受海洋水温条件的显著影响。本文根据2006-2015年7-11月中国鱿钓技术组提供的西北太平洋柔鱼冬生群体的捕捞数据以及海表温度(SST)数据,利用捕捞努力量与SST的频率分布关系,估算柔鱼各月适宜温度范围(PFSST),对1985-2015年柔鱼PFSST进行估算,同时分析柔鱼PFSST的年代际变化规律,并评估不同强度厄尔尼诺和拉尼娜事件对柔鱼栖息地的影响。研究表明,2006-2015年柔鱼各月适宜的SST具有明显变化,7-11月对应适宜的SST范围分别为16~19℃、17~21℃、15~19℃、14~16℃和12~13℃。单位捕捞努力量渔获量大小随PFSST变动而发生相应变化,两者具有显著正相关关系,这说明了柔鱼渔场范围内适宜温度面积增加,对应柔鱼资源丰度上升。1985-2015年柔鱼PFSST呈现显著的月间和年际变化,7-11月PFSST具有先增加后递减的变化规律,且7-9月PFSST年际波动相似,10和11月PFSST年际变化相似。同时,柔鱼PFSST与渔场内SST具有显著正相关关系。柔鱼渔场内PFSST受厄尔尼诺和拉尼娜事件调控,其面积随气候事件的强度发生变化,具体表现为:弱拉尼娜事件和正常气候条件下,柔鱼渔场范围内水温最高,适宜栖息面积显著增长;中等强度和高强度拉尼娜条件下,柔鱼渔场内平均水温较高,但适宜栖息面积较前两者显著减小;弱强度、中等强度和超高强度厄尔尼诺条件下,柔鱼渔场内水温均较低,但弱强度和超高强度厄尔尼诺条件下柔鱼适宜栖息面积均大于中等强度厄尔尼诺条件。  相似文献   

12.
The Pacific interior subtropical?tropical cells (STCs) and their relation to the two types of El Niño-Southern Oscillation (ENSO) are investigated by using GODAS reanalysis ocean data for the period of 1980–2017. The results show that the interior STC transport into the equatorial region across 9°S and 9°N has a close relationship with the eastern Pacific (EP) ENSO, while it is much weaker with the central Pacific (CP) ENSO. It is suggested that the effect of interior STCs on the tropical Pacific climate is reflected in its relation with the western Pacific thermocline depth or SSHA. During the EP El Niño, the anomalous interior STCs at 9°S and 9°N converge to the equatorial region from the lag months of ? 25 to ? 8, leading to an accumulation of heat content in the equatorial Pacific; from the lag months of ? 8 to 10, they diverge poleward, inducing a discharge of equatorial heat content. The peak poleward interior STC anomaly first appears at 9°N at a zero-lag time, while that at 9°S is observed 4–5 months later. But there is also no appearance of a time lag between the interior STCs at 9°N and 9°S in recharging the period during the EP La Niña mature phase. However, during CP El Niño, only the conspicuous anomalous interior STC divergence appears during the mature and decay phases for the lag months of ? 2 to 10, with being symmetric at 9°N and 9°S.  相似文献   

13.
ENSO indices from sea surface salinity observed by Aquarius and Argo   总被引:1,自引:0,他引:1  
Analysis of the first 26 months of data from the Aquarius satellite confirms the existence of a sharp sea surface salinity (SSS) front along the equator in the western equatorial Pacific. Following several earlier studies, we use the longitudinal location of the 34.8-psu isohaline as an index, termed Niño-S34.8, to measure the zonal displacement of the SSS front and consequently the eastern edge of the western Pacific warm pool. The on-going collection of the Array for Real-time Geostrophic Oceanography (ARGO) program data shows high correlations between Niño-S34.8 and the existing indices of El Niño, suggesting its potential important role in ENSO evolution. Further analysis of the ARGO data reveals that SSS variability in the southeastern tropical Pacific is crucial to identify the type of El Niño. A new SSS index, termed the southeastern Pacific SSS index (SEPSI), is defined based on the SSS variability in the region (0°–10°S, 150°–90°W). The SEPSI is highly correlated with the El Niño Modoki index, as well as the Trans-Niño index, introduced by previous studies. It has large positive anomalies during central Pacific El Niño or El Niño Modoki events, as a result of enhanced zonal sea surface temperature gradients between the central and eastern tropical Pacific, and can be used to characterize the type of El Niño. The processes that possibly control these SSS indices are also discussed.  相似文献   

14.
The central Pacific(CP) zonal wind divergence and convergence indices are defined, and the forming mechanism of CP El Nio(La Nia) events is discussed preliminarily. The results show that the divergence and convergence of the zonal wind anomaly(ZWA) are the key process in the forming of CP El Nio(La Nia) events. A correlation analysis between the central Pacific zonal wind divergence and convergence indices and central Pacific El Nio indices indicates that there is a remarkable lag correlation between them. The central Pacific zonal wind divergence and convergence indices can be used to predict the CP events. Based on these results, a linear regression equation is obtained to predict the CP El Nio(La Nia) events 5 months ahead.  相似文献   

15.
西风爆发、次表层暖水东移与厄尔尼诺现象   总被引:7,自引:2,他引:7       下载免费PDF全文
利用最近20 a的大气海洋资料,分析了厄尔尼诺事件与赤道太平洋西风异常以及赤道太平洋次表层海温之间的关系.结果表明,赤道西太平洋(5°S~5°N,120°~160°E)和赤道中东太平洋(5°S~5°N,160°E~160°W)西风异常都存在着与厄尔尼诺周期一致的年际变化,但前者还包含有显著的2~3个月季节内振荡.赤道西太平洋次表层冷暖水东移也呈现年和年际时间尺度的振荡周期.在厄尔尼诺发生前,赤道西太平洋次表层海水出现持续性增暖,赤道西太平洋西风异常频率加快,强度增强.随后赤道中太平洋(160°E~160°W)出现持续性(3个月以上)强西风异常(即西风爆发),并进一步向东扩展,同时次表层暖水沿着赤道波导东移到赤道东太平洋混合层,导致赤道东太平洋海表大面积异常增暖,形成一次厄尔尼诺现象.最后,模式模拟了1980~1984年赤道太平洋海温的变化,进一步证实了赤道纬向西风异常对暖水东移起着重要的作用.  相似文献   

16.
太平洋褶柔鱼为大洋性经济鱼种,具有一年生命周期,其资源变动受气候和海洋环境条件的显著影响。本研究根据日本提供的2003-2012年太平洋褶柔鱼冬生群体的渔业统计数据,结合产卵场环境数据以及尼诺指数ONI(定义为Niño 3.4区海表温度距平值),分析不同气候条件下(厄尔尼诺和拉尼娜)太平洋褶柔鱼冬生群体产卵场海表温度(SST)、叶绿素a(Chl-a)浓度以及适宜产卵面积(SSA)的变动情况及对其资源丰度(CPUE)的影响。结果表明,太平洋褶柔鱼冬生群体产卵场SST、Chl-a浓度和SSA具有明显的季节性变化。相关分析表明,各年CPUE与Chl-a浓度以及SSA具有显著的正相关关系(p<0.05),但与SST相关性不显著(p>0.05)。此外,厄尔尼诺和拉尼娜事件通过驱动太平洋褶柔鱼冬生群体产卵场SSA和关键海域(25°-29°N,122.5°-130.5°E)内的Chl-a空间分布和大小变化,从而改变其资源丰度,但影响作用随各异常事件的强度不同而变化,具体表现为:发生弱强度厄尔尼诺事件时,产卵场SSA较高,Chl-a浓度处于较低水平,导致资源补充量处于较低水平,CPUE降低;发生中等强度厄尔尼诺事件时,产卵场SSA较低,但Chl-a浓度处于较高水平,导致资源补充量增加,CPUE处于上升水平;发生中等强度拉尼娜事件时,产卵场SSA和Chl-a浓度均处于较高水平,资源补充量显著增加,CPUE显著升高。研究表明,厄尔尼诺和拉尼娜事件对太平洋褶柔鱼冬生群体产卵场摄食孵化环境和资源丰度变动具有显著影响。  相似文献   

17.
《Marine Geology》2005,219(1):47-69
Laminated sediments preserved in the anoxic inner basin of Effingham Inlet on the Pacific coast of Vancouver Island, British Columbia, Canada, yield a high-resolution sediment deposition record spanning about 6000 yr. The varying thickness of diatom/terrigenous mud varves in sediment cores from the basin can be interpreted in terms of annual changes in surface productivity and freshwater input within the inlet. Similarly, the occurrence of unlaminated mud units (homogenites) intercalated amongst the laminated sediments can be interpreted in terms of oceanic and climatic changes. These units appear to be associated with coastal upwelling events that result infrequently in highly oxygenated oceanic water penetrating to the bottom of the inner and outer basins of the inlet. The sedimentary record also contains massive and graded mud units considered to arise from debris flows and turbidity currents, some of which were probably initiated by seismic events, including a major event about 4500 14C yr BP which may be earthquake related. A total of seventeen oceanographic surveys of the inlet beginning in 1995 characterize the modern seasonal coastal upwelling regime and a unique bottom water oxygenation event which was recorded in January 1999, following a rapid transition from the strong El Niño event of 1997–98 to the moderate La Niña event of 1998–99. Circum-Pacific evidence suggests that a “regime shift” from warm to cold conditions occurred in the central northeast Pacific in the late 1990s, indicating that the coastal ocean processes influencing Effingham Inlet sedimentation are likely modified by climate-scale ocean variability.  相似文献   

18.
Abstract. Changes in live and dead coral cover were documented at three localities off the Costa Rican central Pacific coast first in 1992 during the aftermath of the 1991–1992 El Niño; again in the period between 1994 and 1995, and last in January 2001. Recovery of coral communities after the 1991–1992 El Niño was expressed by a significant increase (~40 %) in 1994 of live coral cover at one locality (Manuel Antonio). A subsequent decrease (~50 %) in response to the very strong 1997–1998 episode was recorded at Manuel Antonio and Ballena, mainly due to partial tissue mortality of branching (Pocillopora spp.) and massive (Porites lobata) corals. Mortality of entire colonies associated to that event was scarce and confined to branching and nodular (Psammocora stellata) corals. This species was not found at one locality (Cambutal) in the 2001 survey and it is presumed locally extinct. The recovery of this coral and others will depend on recruits from surviving colonies in deeper waters and other coral communities in the vicinity. Within sites at a given locality, contrasting results in live coral cover variability were found. This is partially due to distinct coral assemblages, coral growth, physical exposure to tidal regime, and, related to the latter, variable duration and intensity of the warming event. In general, predominant meteorological conditions at the studied area are conducive to solar radiation (UV) stress during El Niño years and are related to changes in the atmosphere‐ocean interactions in response to the warming events.  相似文献   

19.
Time-varying air–sea coupled processes in the central to eastern equatorial Pacific associated with strong El Niño development during the 1997–1998 period are examined using a newly developed reanalysis dataset obtained from four-dimensional variational ocean–atmosphere coupled data assimilation experiments. The time series of this data field exhibits realistic features of El Niño evolution. Our analysis indicates that resonance between eastward-propagating oceanic downwelling Kelvin waves and the seasonal rise of sea-surface temperature (SST) in the central to eastern equatorial Pacific generates relatively persistent high SST conditions accompanied by a deeper thermocline and more relaxed easterly winds than usual. The surface condition resulting from the wave-seasonal SST resonance represents a preconditioned state that leads to an enhancement in incident downwelling Kelvin waves to levels sufficient to induce large-amplitude unstable coupled waves in the central to eastern equatorial region. Heat balance estimates using our reanalysis dataset suggest that the unstable coupled waves are categorized within the intermediate regime of coupled Kelvin and Rossby waves and have the potential to grow rapidly. We argue that the seasonal resonance and the unstable coupled waves should play crucial roles in the development of the largest historical El Niño event, which was recorded between late 1997 and early 1998.  相似文献   

20.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号