首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
渤海,黄海强温跃层数值预报模式   总被引:7,自引:0,他引:7  
文中对前人关于水温垂直结构计算,模拟和预报研究成果进行了评价,并在此基础上建立了考虑海面吸收辐射和透射辐射,地形,风,海流,界面摩擦及其引起的混合使用的强温跃层三维数值预报模式。该模式运行的驱动量仅为风和气温场资料,因而具有较好的实用性;此外,从试报的结果看,效果是令人满意的。  相似文献   

2.
辐射应力对台风风暴潮预报的影响和数值研究   总被引:2,自引:0,他引:2  
台风过程期间,风暴潮和海浪是相伴相生的,相互作用的.波致辐射应力对于近岸风暴增、减水起着十分重要的作用,传统的海浪模式计算辐射应力耗时较多,不能满足业务化预报的要求.根据已有波浪辐射应力的理论表达式,经过严密的数学推导,适当的简化处理,提出了一个较为简单的波浪辐射应力表达式,并将其应用到业务化风暴潮数值预报模式中去,通...  相似文献   

3.
渤、黄海强温跃层数值预报模式   总被引:4,自引:0,他引:4  
对前人关于水温垂直结构计算、模拟和预报研究成果进行了评价,并在此基础上建立了考虑海面吸收辐射和透射辐射、地形、风、海流、界面摩擦及其引起的混合作用的强温跃层三维数值预报模式。该模式行动的驱动量仅为风和气温场资料,因而具有较好的实用性;此外,从试报的结果看,效果是令人满意的。  相似文献   

4.
本文叙述一些数值预报模式中大气边界层的处理。着重讨论大气边界层模式和自由大气模式的耦合、混合层的演变、表面层参数化、卷夹的参数化以及湿热力过程和辐射的作用。指出大气边界层的处理对海洋环境数值预报的重要性。  相似文献   

5.
海浪和潮汐风暴潮耦合过程的数值研究   总被引:1,自引:0,他引:1  
海浪和风暴潮是重要的海洋灾害。对它们的精确预测和预报对沿岸海洋灾害的风险评估及海洋工程的设计具有极其重要的社会和经济价值。过去人们本多对波浪和风暴潮单独进行预报。实际上,风既产生浪又产生风暴潮,因此它们的产生必然存在相互作用。本研究的目的就是要建立一个渤海高分辨率的双向耦合的海浪和潮汐风暴潮数值模式,研究各耦合机制的影响,以期为黄河三角洲沿岸风暴潮海浪漫堤、漫滩风险评估提供更为准确的海浪风暴潮预测预报结果。 作者在研究中基于国际上先进的第三代海浪数值模式和潮汐风暴潮模式,建立了渤海2''×2''的海浪和潮汐风暴潮耦合数值模式。耦合模式充分考虑了三个主要耦合物理机制:依赖海浪状态的表面风应力,波-流相互作用底应力和辐射应力。波浪模式主要基于国际上第三代WAM模式,并对其进行了浅水效应的改进,以包括浅水深度破碎引起的能量耗散;潮汐风暴潮模式计算中开边界考虑了10个主要分潮K1,O1,P1,Q1,M2,S2,N2,K2,Sa,Ssa。依赖海浪状态的表面风应力取自Donelan等(1993)的结果,波-流相互作用底应力取自Signell等(1990)对 Grant and Madsen(1979)简化的结果,辐射应力以海浪谱表示。耦合计算中,两个模式通过三个耦合机制双向传递所需参量。 运用胜利油田中心一号观测的2个同步浪、潮、流资料对所建的耦合模式进行了检验,并通过耦合和非耦合模式结果的对比对各耦合机制的影响效应进行分析研究。研究结果表明,不同物理机制对波高的影响主要由能量方程中以辐射应力表示的波流相互作用所决定;在波-潮耦合作用中,依赖波令的表面风应力和辐射应力对水位是正效应,而波流相互作用底应力对水位是负效应。三个物理机制的综合净效应是正,可增加水位达25cm。比较显示,耦合模式的结果无论对波高还是水位都比非耦合模式的结果好,特别在峰值处。 本研究显示耦合模式的结果将改进海浪和风暴潮的模拟精度。所建立的耦合模式将对渤海海浪和风暴潮预报精度的提高,以及为黄河三角洲近岸海浪和风暴潮灾害的风险评估,提供更可靠的参数,具有重要的价值。  相似文献   

6.
印度洋偶极子预报技巧在多模式中的对比研究   总被引:1,自引:0,他引:1  
本文采用北美多模式集合产品数据,分析了印度洋偶极子指数在不同模式中实际预报技巧和潜在可预报性的差异,并进一步探究其可能的原因。结果表明,印度洋偶极子的有效预报时效在不同模式中差别较大,从2个月到4个月不等。其中东极子海温异常在不同模式中预报技巧的差别较西极子海表面温度异常更明显,表明模式误差和初始误差对东极子海表面温度异常演变的影响更为显著。另外,印度洋偶极子的实际预报技巧和潜在预报技巧存在明显的线性关系,潜在预报技巧高的模式,其实际预报技巧也高。最后,本文诊断、分析了厄尔尼诺对印度洋偶极子预报技巧的影响,发现在厄尔尼诺和印度洋偶极子相关性较高的气候模式中,印度洋偶极子实际预报技巧也较高。  相似文献   

7.
杨良华 《海洋预报》1995,12(4):34-42
本文探讨东海区近海强风预报模式,首先介绍建立预报模式的思路和步骤,及使用说明,为了验证强风预报模式和判别条件,用1986、1987上日本传真天气图进行试报,准确和基本准确度为91.1%,并给出了1989、1995年随船试验预报结果,准确和基本准确率为90%以上。  相似文献   

8.
运用澳大利亚大气海洋耦合预报模式(Predictive Ocean Atmosphere Model for Australia,POAMA)的输出结果,采用泰勒图与分类统计分析方法,评估了该模式对2003和2004年南海夏季风的爆发和演变进行实时预报的能力。通过对泰勒图的分析发现,随着预报初始时间越来越接近实际的季风爆发时间,模式预报南海夏季风爆发和演变的能力越来越强。当提前1-30d预报南海夏季风时,模式能够很好地预报风场、射出长波辐射OLR(Outgoing Longwave Radiation)和降水场的空间分布,其中对风场的预报最好。通过对季风爆发指数和分类统计的分析,定量分析了模式预报南海夏季风爆发的能力,结果表明该模式对南海夏季风爆发时间有一定的预报能力,其最大预报时限可以提前10-15d左右,这与目前中期预报的上限(2周)是一致的。  相似文献   

9.
本文叙述一些数值模式中行星边界层的处理。讨论关于行三边界层模式和自由大气模式的耦合、混合层的演变、表面层参数化、卷央的参数化以及湿热力过程和辐射的作用。并指出行星边界居的处理对海洋环境数值预报的重要性。  相似文献   

10.
本文主要介绍了南海及邻近海域大气-海浪-海洋耦合精细化数值预报系统的研制概况。预报区域为99°E~135°E,15°S~45°N,包括渤海、黄海、东海和南海及其周边海域。为了给耦合预报模式提供较准确的预报初始场,在预报开始之前,分别进行了海浪模式和海洋模式的前24小时同化后报模拟。海浪模式和海洋模式都采用了集合调整Kalman滤波同化方法,海浪模式同化了Jason-2有效波高数据;海洋模式同化了SST数据、MADT数据和ARGO剖面数据。为了改进海洋温度和盐度的模拟,我们在海洋模式的垂向混合方案中引入波致混合和内波致混合的作用。预报系统的运行主要包括两个阶段,首先海浪模式和海洋模式进行了2014年1月至2015年10月底的同化后报模拟,强迫场源自欧洲气象中心的六小时的再分析数据产品。然后耦合预报系统将同化后报模拟的结果作为初始场进行了14个月的耦合预报。预报产品包括大气产品(气温、风速风向、气压等)、海浪产品(有效波高和波向等)、海流产品(温度、盐度和海流等)。一系列观测资料的检验比较表明该大气-海浪-海洋耦合精细化数值预报系统的预报结果较为可靠,可以为南海及周边海洋资源开发和安全保障提供数据和信息产品服务。  相似文献   

11.
AnumericalpredictionmodelofstrongthermoclineintheBohaiandtheHuanghaiSeasWangZongshan,XuBochang,JinMeibing,ZouEmei,LiFanhua(Re...  相似文献   

12.
根据文献[l]建立的底层温度(TH)与其水柱垂向平均温度()的经验关系,结合流体动力学方程和(垂向平均)热传导方程,发展了以水气温差和风速为已知量的底层温度二维数值预报模式。该模式避开了海面热量和动量输入在垂直水柱中分配的复杂物理过程而直接报出底层水温场,具有较好的实用性;此外,从试报结果看,效果令人满意。  相似文献   

13.
In the paper, the sea is divided into two layers with density jumping, assuming that the physical parameters in each layer are independent of depth. Two-layer flow field with tide and wind currents is calculated with extended ADI method, after the calculation for flow field is stable , coupled with temperature diffusion equations and thermohaline depth prediction equation, a four-day time prediction of the surface, bottom temperature and thermohaline depth of the Huanghai and the Bohai Seas. At the same time, three dimensional temperature field of sea water is predicted through vertical temperature distribution function. The result indicates that the prediction quality of the whole model and the fitting degree between the predicted result and the measured values are satisfactory.  相似文献   

14.
文中将海洋分为具有密度阶跃的两层,设各层内各物理量与深度无关,用推广的ADI方法进行包括潮流和风海流的二层流场计算,待流场计算稳定后,与温度扩散方程和上均匀层深度预报方程相耦合,对黄渤海区表、底层温度和上均匀层深度作了为期4d的试报。然后,通过温度垂直剖面自模函数预报出三维的水温场。试报结果表明,整个模式的预报性能及试报结果与实测的吻合程度是令人满意的。  相似文献   

15.
变分伴随数据同化方法在断面海温数值计算中的应用研究   总被引:3,自引:0,他引:3  
以二维断面海温分布模型为例,利用海温实际观测数据,将变分伴随方法应用于断面海温初始场的优化。讨论了变分伴随方法的基本思想,分别从模型方程的连续和离散形式出发推导伴随模型系统,并对这两种途径建立的伴随系统之间的相互关系进行了分析。数值试验的结果表明了变分伴随数据同化方法在海温数值计算和数值预报业务中的良好的应用前景。  相似文献   

16.
应用二层模式和阻力定律诊断海上20m高度的风和温度场。应用边界层模式和数值天气预报模式实现试报。运用热输送定律计算海上温度,计算结果与实测比较令人相当满意。本文对相似参数的敏感性也作了检验。并指出应用斜压边界层模式的计算大于应用正压模式的结果。  相似文献   

17.
18.
海—气相互作用与海流、风暴潮   总被引:3,自引:4,他引:3  
秦曾灏 《海洋学报》1979,1(1):17-38
从方法论上说,除潮汐以外,通常在处理海洋动力学问题时,大多撇开海洋对大气的影响,强调大气对海洋的主导作用,把大气运动当作诱发海水运动的唯一原动力,视海面风场为给定条件,而后用经验或半经验公式算出海面风应力场,作为施加于海水的强迫力。因此,一个成功的海浪、海流或风暴潮的预报,除了具备反映海水运动的主要物理性能的数学模型外,还必须以客观的、准确的海面风场的数值计算和预报为前提。由于问题的复杂性,迄今为止似乎还不能说在实用上已经提供了海面风的一种足够精确的估算或预报方法。海上气象观测资料,尤其是测风资料的稀少,给海面风应力的实际计算带来不少困难。  相似文献   

19.
A numerical multilevel model based on primitive equations of sea thermohydrodynamics is applied to investigate the development of near-shore upwelling zones in the north-western Black Sea. Analysed are the results of eight numerical experiments on mapping the areas of upwelling and downwelling, depending on wind direction. The acquired data are matched up with the observations by the NOAA-11 satellite designed to measure sea surface radiation temperature twice a day. The numerical calculations are shown to agree with the remotely-sensed data. Translated by Vladimir A. Puchkin.  相似文献   

20.
黄海、渤海盐度的垂直结构具有典型的自模性,而其水平分布又受平流、水平扩散效应及径流等因素的影响。本文根据黄海、渤海实测资料拟合了盐度垂直剖面的自模函数,并结合描述表、底层盐度及上均匀层厚度这3个特征量水平分布的方程,给出盐度三维结构的准三维模式。在模式中,综合考虑了海面风和热输入的强迫作用以及流场的平流、侧向混合及底层混合的影响因素,同时还考虑了径流、蒸发及降水的作用,较客观地反映了盐度的三维分布及其变化的物理过程。试报结果分析表明,模式的功能较好,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号