首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
海雾生成过程中平流、湍流、辐射效应研究   总被引:4,自引:3,他引:1  
推导出一个相对湿度方程,分析了在海雾生成过程中平流、湍流和辐射的效应.  相似文献   

2.
推导出一个相对湿度方程,分析了在海雾生成过程中平流、湍流和辐射的效应。  相似文献   

3.
2010年2月一次冬季黄海海雾的成因分析   总被引:1,自引:0,他引:1  
利用青岛浮标观测、自动气象站观测、Micaps站点观测、L波段雷达等观测数据,New Generation SST,OI-SST和NCEP提供的FNL和CFSR再分析数据。并利用中尺度模式WRF对这次冬季海雾进行诊断分析。得到以下结论:(1)观测表明,这次海雾首先在黄海北部生成,是由于冷暖空气在黄海海域交汇,增大相对湿度,形成混合雾。在22日12:00时(UTC)之后,暖平流北上,冷平流消失。海雾逐渐转成平流冷却雾。青岛出现的海雾是从黄海发展过来的,并且为平流冷却雾。(2)在黄海,冷暖空气混合增大相对湿度,生成混合雾。与后期的平流冷却雾相比,混合雾的高度明显偏低。(3)海温异常偏低。在2010年2月渤海大面积结冰,海温偏低可能与融冰有关系。(4)模式结果表明,混合雾与冷水域的关系密切。平流冷却雾与冷水域的位置基本一致。混合雾和平流冷却雾都受海温影响较大。混合雾雾区变化很大,因为冷空气在移动过程中变性,不利于混合雾生成。冷海面对平流冷却雾起着很关键的作用。这次冬季海雾与春夏季黄海海雾的不同点在:这次海雾的发生机制不同于典型的春夏季黄海海雾。春夏季典型的黄海海雾主要是平流冷却雾,而这次冬季海雾在生成上首先是混合雾,后来转为平流冷却雾。  相似文献   

4.
海雾   总被引:1,自引:0,他引:1  
一、一般说明 海雾是海洋上低层大气中的一种水汽凝结现象。由于雾中能见度低,海雾成为海洋运输、水产捕捞、海洋开发和海上军事活动等的一大障碍,是海洋上的一种灾害性天气。 山东海洋学院曾参加1971—1973年在东海和黄海进行的海雾专题调查。本节在分析海雾专题调查资料的基础上,结合使用有代表性的岛屿资料(如长江口区的佘山,山东半岛南部的朝连岛),同时采用近期有关该海域海雾研究的成果,就海雾的气候背景、天气特征、低层大气的平流作用和海气间的湍流交换作了综合研究,主要结果分述如  相似文献   

5.
利用多种观测资料、再分析资料和WRF模式,对2008年4月29-30日和5月2-3日两次黄海春季海雾进行对比分析,研究黄海海雾影响沿海地区的因素。分析表明:(1)两次海雾过程均属于平流冷却雾过程。在低层水平方向上,合理的高、低压配置,使气流持续地从暖湿海面输送到冷海面上,有利于形成深厚的海雾,进而在海风的作用下影响沿海地区。在垂直方向上,边界层内上干下湿的结构有利于海雾的发展与维持。(2)边界层内稳定持续的逆温层结构,使水汽在逆温层内累积,有利于海雾的发展与维持。雾顶的长波辐射冷却作用以及雾层内适度的湍流有利于海雾的发展与维持;而低层风速增大会引起机械湍流的迅速增长,进而导致海雾消散。(3)海雾影响明显时,对应黄海海域上空的暖平流较强,水汽通量较大,暖湿平流来源于较暖的海面。反之,对应黄海海域上空的暖平流较弱,水汽通量较小,暖湿平流来源于较冷的海面。  相似文献   

6.
利用站点观探测资料、气象卫星资料和ERA-Interim数据对2017年2月21日下午到23日早晨海南岛东部沿海一带出现的一次海雾过程进行成因分析。结果表明:(1)此次海雾具备辐射和平流两种性质,海雾生命周期中,层云和海雾发生4次相互转化,而新一轮冷空气使海雾过程结束;(2)海雾发生在入海变性的高压脊天气系统中,100~200 m有逆温层存在,为海雾的生成维持提供较好的背景环境;(3)海雾期间边界层高度小于300 m,边界层适度的抬升有利于海雾生成和维持;(4)低层偏南风为海南岛东部海面输送水汽和热量。在海雾生成发展阶段,感热输送大于潜热,而消散阶段潜热输送大于感热。风场输送的热量增大海气温差,增强湍流热量输送,造成降温增湿使海雾生成维持。  相似文献   

7.
海雾过程中海洋气象条件影响数值研究   总被引:2,自引:2,他引:2  
利用二维数值模式,研究了在海雾过程中海温场、气温场、湿度场、风场等海洋气象条件的影响。结论如下:(1)海温主要影响海雾的生成过程,当海雾生成后,它的作用就逐步减小了;(2)气温梯度(暖平流)较大,不利于海雾生成,逆温不是海雾生成的一个充要条件;(3)相对湿度大小及其分布是海雾能否生成的物理基础;(4)风速大不利于海雾生成,但海雾一旦生成,则有利于其发展  相似文献   

8.
青岛海雾的气候特征和预测研究   总被引:4,自引:0,他引:4  
使用青岛市气象台近30年(1971-2000年)的气象观测资料,对青岛沿海发生的海雾进行了详细的气候统计和分析,揭示青岛海雾发生的基本气候特征;同时通过对青岛平流海雾发生时的天气图分析,得出入海高压的后部型和低压或倒槽的前部型及均压场型这三类地面天气形势场最容易导致青岛平流海雾的出现;最后根据平流海雾发生的特征,用逐步回归方法对平流海雾的预报因子进行了筛选,在此基础上,利用SVM(Support Vector Machines)的分类方法对青岛雾季发生的平流冷却海雾的预测进行了研究,预测结果表明了SVM方法对青岛雾季发生的平流冷却海雾有着较好的业务预报效果,为青岛海雾的预报提供了1种新的途径.  相似文献   

9.
我国东部沿海一次局地海雾抬升成云过程分析   总被引:3,自引:0,他引:3  
利用洪家站L波段雷达探空资料、高分辨率海气耦合模式再分析资料、静止气象卫星云图和地面观测资料,分析了一次黄东海海雾抬升为低云,使海雾消散的过程。发现近海面偏南风速突然增强,海洋大气边界层(MABL)中机械剪切加强,湍流混合层向上发展,是导致海雾抬升转化为低云的主要原因。近海面风速突然增加与高空急流北抬、平均层槽脊振幅加大、槽前正涡度平流输入诱使地面低压系统发展、地面气压梯度力增大有关。近海面气温升高对海雾消散也有作用,气温升高的原因是暖平流、绝热下沉和海气界面热通量的综合效应。其中,东海海洋锋(STF)冷区的下沉气流可能对边界层内的绝热下沉增温和低云的形成高度有重要的影响。该研究为海雾消散预报提供了新的思路。  相似文献   

10.
海雾是在一定的水文条件和特定的天气背景下产生并维持的。世界各大洋主要雾区分布表明,冷暖海流交汇的海洋锋区,为海雾的生成提供了优越的水文条件,因为穿过锋区,水平方向的温度梯度很大;但也不是每天都有海雾发生,这与当时的天气条件如风场,近水层的大气温湿度以及空气的稳定度等有关。世界各地海雾的水文气象条件各有异同,本讲将以中国海及其临近海域海雾的水文气象特征为依据加以分析,同时介绍海雾的某些微观物理特征。 一、水文气象条件 (一)水温和水气温差 西北太平洋及其边缘海域的海雾,以平流冷却雾为主,尤其在多雾的春、夏季。产生条件是暖空气平流到冷海面上,因此它的生成与消散,必然与海表面温度,大气和海水温度差以及风场有关,当海面上的空气在平流冷却过程中,气温降到露点温度,空气方可饱和,如果露点温度恰好等于水温,那么低层空气凝结成雾是顺理成章的。但是,如果水温很高,而空  相似文献   

11.
张兴发 《海洋学报》1982,4(1):12-20
海雾是近海面层大气的水汽凝结现象.这种现象的发生是大气与海洋及大气内部热量和水汽交换的结果.Rodhe,B.[1]曾用湍流扩散方程讨论过湍流对雾形成的作用.Fisher,E.F.和Caplan[1]首次对雾和层云的形成进行数值试验.  相似文献   

12.
为探究冬季不同背景风场下黑潮锋影响边界层云的机理,采用高分辨率卫星数据和再分析数据,研究了冬季海面背景风为垂直(西北风)和平行(东北风)东海黑潮海表面温度锋(黑潮锋)条件下,边界层云对黑潮锋的响应。结果表明:背景风垂直黑潮锋情况下,黑潮锋强迫的边界层内次级环流明显,黑潮锋暖水侧海面冷平流强,海气温差增大,海气界面潜热感热通量增大,海气界面不稳定性增大,产生上升运动,云底高度抬升。上升运动在边界层底向南北两侧辐散,在冷水侧产生下沉运动与500 hPa高压下沉叠加,使局地云量明显减少,形成晴空少云区(云洞)。在暖水侧以南的下沉支叠加云顶上的下沉运动和边界层退耦效应共同作用,产生另一个云洞。气压调整机制为次级环流产生的主要原因。背景风平行黑潮锋情况下,海面空气温度平流作用小,暖水侧海气温差较小,虽然海洋仍然加热大气,但海气界面不稳定较弱,湍流增强使云底高度抬升,垂直混合机制为该湍流增强的主要原因。  相似文献   

13.
20世纪90年代后期南海上层海温变化趋势的转折   总被引:1,自引:1,他引:0  
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data sets and two reanalysis data sets. The trends of the SCS sea surface temperature(SST) have changed from warming to cooling since the late 1990 s. A heat budget analysis suggests that the warming of the surface mixed layer during 1984–1999 is primarily attributed to the horizontal heat advection and the decrease of upward long wave radiation, with the net surface heat flux playing a damping role due to the increase of upward latent and sensible heat fluxes. On the other hand, the cooling of the surface mixed layer during 2000–2009 is broadly controlled by net surface heat flux, with the radiation flux playing the dominant role. A possible mechanism is explored that the variation of a sea level pressure(SLP) over the North Pacific Ocean may change the prevailing winds over the SCS, which contributes to the change of the SST in the SCS through the horizontal heat advection and heat fluxes.  相似文献   

14.
北太平洋副热带模态水形成区混合层热动力过程诊断分析   总被引:2,自引:0,他引:2  
利用NCEP海洋数据和COADS海气通量资料,通过诊断分析,揭示了海表热力强迫、垂直夹卷、埃克曼平流和地转平流效应在北太平洋副热带模态水形成过程中的贡献。研究表明,在北太平洋副热带3个模态水形成海域冬季混合层降温过程中,海表热力强迫和垂直夹卷效应是主导因素,二者的相对贡献分别约为67%和19%(西部模态水)、53%和21%(中部模态水)、65%和30%(东部模态水);并且在东部模态水形成海域,埃克曼平流和地转平流皆是暖平流效应,而在西部和中部模态水形成海域,仅有地转平流是暖平流效应。进一步的分析表明,海洋平流(地转平流、埃克曼平流)对北太平洋副热带模态水形成海域秋、冬季混合层温度的年际、年代际异常有显著影响,在西部模态水形成海域,海表热力强迫(62%)和地转平流(32%)是导致混合层温度年际、年代际变化的主要因子;在中部模态水形成海域,混合层温度的年际、年代际变化是埃克曼平流(32%)、地转平流(30%)和海表热力强迫(25%)共同作用的结果;相对而言,东部模态水形成海域混合层温度的年际、年代际异常主要受海表热力强迫(67%)控制。  相似文献   

15.
ORA-S3 oceanological reanalysis data for 1959–2011 is applied to analyze the role different factors play in forming advective heat transfer anomalies on an interannual–decadal scale in the upper mixed layer of the North Atlantic. Regions are revealed in which horizontal heat advection anomalies are determined by variations in current intensity, temperature gradients, and their joint influence. It is demonstrated that the contribution of different mechanisms responsible for advective heat transfer anomalies in the upper mixed layer to the total anomalies of advective origin varies fundamentally from one current to another in the North Atlantic. In the Gulf Stream area (after it separates from the continental slope), horizontal heat advection anomalies in the upper mixed layer result mainly from fluctuations in current intensity, while in the Caribbean Current and the Gulf Stream area (until its separation), they result from variations in the horizontal temperature gradients in the upper mixed layer. In the Labrador Current, both of these mechanisms have the same sign and approximately the same absolute values. In the East Greenland Current, they compensate each other. The contribution of anomalies in horizontal temperature gradients transferred by anomalous currents to the formation of heat transfer anomalies in the upper layer of the North Atlantic are, on the whole, relatively small throughout the water area. The areas of the North Atlantic and West Greenland currents are exceptions.  相似文献   

16.
The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号