首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
Perhaps more than in any other ocean, our understanding of the continental shelves of the Arctic Mediterranean is decidedly disciplinary, regional and fractured, and this shortcoming must be addressed if we are to face and prepare for climate change. A fundamental flaw is that while excellent process studies exist, and while recent ship-based expeditions have added greatly to our collective body of knowledge, an integrated and fully pan-Arctic perspective on the structure and function of food webs on Arctic shelves is lacking. Based on the collective overviews given in Progress in Oceanography xx, xx–xx, we attempt to address this issue. To build a perspective that inter-connects the various shelf regions we suggest three unifying typologies affecting food webs that will hopefully allow inter-comparison of regional investigations. The first is for shelf geography, wherein shelves are classified according to their role in the Arctic throughflow. The second is for ice climate, wherein the various ice regimes are examined for their specific impacts on food web dynamics. The third is for stratification where it is argued that the source of buoyancy, thermal or haline, impacts production and the vertical carbon flux. We then address the connection between physical habitat and biota on pan-Arctic (and global climate) scales. This discussion begins with the recognition that the Arctic Ocean is integral to the World Ocean via its thermohaline (“estuarine”) exchanges with the Atlantic and Pacific. As such the Arctic and its shelves act as a double estuary, wherein incoming waters become both lighter (positive estuary), by mixing with freshwater sources, and heavier (negative estuary) by cooling and brine release. Shelves are central to such transformations. This complex interconnectivity coupling of the Arctic Ocean to its sub-Arctic (and more productive) neighbors demands that food webs be considered through a macroecological view that includes an ecology of advection. We argue that the macroecological view is required if we are to understand and model food webs under forcing along climate gradients. To aid this effort we introduce the concept of contiguous domains, wherein physical habitats are joined by common features that will allow inter-comparisons of existing and future food webs over large scales and climatic gradients. Finally, we speculate on the range of possible futures for Arctic shelves based on the palaeo-record.  相似文献   

2.
张武昌  陈雪  赵苑  赵丽  肖天 《海洋科学集刊》2016,51(51):181-193
微食物环是海洋生态系统中重要的物质和能量过程,是传统食物链的有效补充。微食物环研究是当前海洋生态学研究的热点之一,但对其结构的系统研究较少,海洋微食物网结构在2000年才被Garrison提出。尽管微食物网各个类群的丰度在不同海洋环境中有相对变化,但是这些变化都处于一定的范围之内,其丰度结构约为纤毛虫10 cell ml-1、鞭毛虫103 cell ml-1、微微型真核浮游生物104 cell ml-1、蓝细菌104-5 cell ml-1、异养细菌106 cell ml-1、病毒107 particle ml-1。海洋浮游食物链中捕食者和饵料生物粒径的最佳比值为10:1,实际研究中该比值会略低,例如纤毛虫与其饵料的粒径比值为8:1,鞭毛虫为3:1。Pico和Nano浮游植物的丰度比(Pico:Nano)是研究微食物网结构的指数之一,该指数具有不受研究尺度影响的优点,可用于研究区域性和全球性微食物网结构。近年来,学者们从多角度对海洋微食物网的结构开展了研究,不同海区微食物网各类群丰度、生物量的时间和空间变化研究有很多报道,微食物网的结构可受空间、季节、摄食、营养盐等多种因素影响。在对不同空间微食物网的研究中,学者往往研究不同物理性质的水团中各类群生物丰度的不同,以此来表征微食物网结构的不同;同一海区微食物网结构的季节变化也是使用各个类群丰度和生物量的变化来表示,该变化主要受水文环境因素影响。摄食者对微食物网各类生物的影响通过三种途径:1. 中型浮游动物摄食;2. 中型浮游动物摄食微型浮游动物,通过营养级级联效应影响低营养级生物;3. 中型浮游动物通过释放溶解有机物、营养盐影响细菌和低营养级生物。浮游植物通过产生化感物质和溶解有机物影响微食物网结构,而营养盐的浓度及变化则可以对微食物网产生直接或间接影响。  相似文献   

3.
In October 2004, the North Pacific Marine Science Organization (PICES) sponsored a symposium to consider “Mechanisms that regulate North Pacific ecosystems: Bottom up, top down, or something else?” It sought to examine how marine populations, particularly the upper-trophic-level species, are regulated and to understand how energy flows through marine ecosystems. This introductory essay examines aspects of control mechanisms in pelagic marine ecosystems and some of the issues discussed during the symposium and in the 11 papers that were selected for this special issue. At global scales, the greatest biomass of fishes, seabirds and marine mammals tends to occur in regions of the world ocean with high primary production, e.g., the sub-arctic seas and up-welling regions of continental shelves. These large-scale animal distribution patterns are driven by food availability, not the absence of predators. At regional scales however, it is likely that current predation or past predation events have shaped local distributions, at least in marine birds and pinnipeds. Wasp-waist control occurs when one of the intermediate trophic levels is dominated by a single species, as occurs with small pelagic fishes of the world’s up-welling zones. Processes in these ecosystems may have features that result in a switch from bottom-up to top-down control.  相似文献   

4.
Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (Well-mixed, Transitional and Stratified) and for three seasons (Spring, Summer and Fall/Winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973-2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf-edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.  相似文献   

5.
6.
Deep-sea hydrothermal vents are characterized by steep spatial gradients and high temporal variability in habitat conditions. This leads to the organization of species distribution along spatial habitat gradients, which may constrain food resource utilization and food web structure. We conducted a stable-isotope-based study to test the hypothesis that food resource utilization is constrained by spatial habitat variability at diffuse hydrothermal vents on Axial Volcano, Northeast Pacific. Our study included the ten most biomass-prominent species and considered the temporal change in food web structure at recently created vent sites during three consecutive years. We related species average stable isotopic composition to their position between the center and the periphery of vent sites, using previously published data. Species spread widely along the δ13C axis, and showed a small variability in δ15N. This indicates that most species partition food resources between isotopically different carbon sources, and that they are not organized along predator–prey trophic chains. Particulate organic matter (POM) stable isotopic composition from a concomitant study corresponds to the signature of the expected diet for most organisms. Species average δ13C was significantly correlated to their relative position between the center and the periphery of vent sites. We relate this spatial variability in species isotopic composition to variability in the isotopic signature of both dissolved inorganic carbon (DIC) and POM. This spatial isotopic signal of consumers reveals the spatial structuring of food (POM) production and its consumption by the fauna. Accrual of species during the development of diffuse sites increased the inter-specific spread in δ13C, but did not increase the range in δ15N. Our results show that the spatial organization of species distribution results in a fragmented food web where species partition POM food resources according to their position in space. Shaping of species distribution by habitat gradients therefore constrains food web structure and the occurrence of predator–prey and competitive interactions.  相似文献   

7.
杨灿  徐文喆  孙军 《海洋科学》2023,47(4):176-183
随着纳米塑料在海洋中的分布越来越广泛,纳米塑料逐渐演变成目前海洋生态系统中面临的严重环境问题之一,引起人们的广泛关注。纳米塑料比微塑料粒径更小,具有更大的比表面积与吸附力,成为海洋中污染物的重要载体之一,影响深远。双壳类具有滤食特殊摄食方式,可通过食物链影响其他营养级生物,是食物链中重要一环。本文主要就纳米塑料的定义与来源、在海洋中的污染现状、对海洋双壳类的生态毒理效应进行阐述。纳米塑料可以通过海洋生物呼吸和进食过程中摄入体内,在吞噬细胞中诱导氧化应激、线粒体损伤和细胞毒性并产生严重的炎症反应。研究表明,在有其他污染物的存在下,纳米塑料的存在,会增加污染物在海洋生物体内的留滞时间,从而加大其毒性。纳米塑料可以通过食物网对海洋生态系统构成威胁。  相似文献   

8.
According to graph theory, the frequency distribution of trophic interactions within a food web has deep structural implications, as it can highlight the presence of patterns associated with the web and indicate whether the properties of the web are independent of its size. A hypothesis is that ‘small‐world’ food webs are sensitive to the loss of species with the highest values. Therefore, the present work aimed to evaluate the degree to which a subtropical food web in Southern Brazil displays small‐world patterns and their resistance. As part of the assessment, we evaluated the topological redundancy values of species in the food web and then we simulated the exclusion of these species (such as sharks and sea birds), and also the exclusion of high centrality species (such as squids Loligo sp., portunid swimming crabs and the cutlassfish Trichiurus lepturus). The food web showed a ‘broad‐scale’ distribution of connections by node, and a small‐world pattern. As expected, a simplification of the network was observed after elimination of some species with high centrality. However, the food web was resistant to the loss of species with low topological redundancy, probably because these species occupy a high trophic level and do not participate in lots of routes within the food web. We highlight however, the importance of the application of multiple analyses to evaluate the importance of components in food webs, and fisheries management plans should consider both species of high centrality values and species with low topological redundancy.  相似文献   

9.
10.
This paper demonstrates the importance of advective transport of water through permeable estuarine and salt marsh sediments. This transport delivers significant quantities of radium and barium to the coastal ocean; and, in some cases may remove significant quantities of uranium. These conclusions are based on repeated analyses of seven river–estuarine systems from North Carolina to Florida. Fluxes of radium and barium from these river systems are shown to be inadequate to balance the dissolved inventories of these elements in the South Atlantic Bight. The strong interactions that occur between surface and subsurface waters as these rivers encounter coastal marshes lead us to consider these river mouths as marsh-dominated in terms of their chemical fluxes to the ocean. Such interactions between the river and coastal marsh must be considered when estimating fluxes of material between the land and ocean.  相似文献   

11.
Kelp holdfasts are highly reticulated structures which host a large diversity of small fauna. These microhabitats have been reported to play a crucial role in the biodiversity associated to kelp forest ecosystems. This study aimed at identifying trophic links and the main food sources sustaining food webs within communities associated with kelp holdfasts, through a stable isotope (δ13C and δ15N) approach. Sampling of the main invertebrates inhabiting Laminaria digitata holdfasts, and of their potential food sources, took place in February and May 2007. Stable isotope results reveal that most of the primary consumers, including filter-feeders and deposit-feeders, rely on the particulate organic matter sedimented within kelp holdfasts. Only three grazers departed from this general pattern. The correspondence between the stable isotope ratios of predators and sediment consumers indicated that this source is at the base of the main pathway through which energy and matter transit in the food web. δ15N ranges found for consumers revealed that the food web associated with kelp holdfasts is composed of 3.5 levels. In spite of the low diversity of food sources at the base of the food web, these microhabitats can therefore be considered micro-scale ecosystems, from a functional perspective.  相似文献   

12.
The spatial variability in the food web structure of a Mediterranean semi-enclosed coastal environment (Stagnone di Marsala, Italy) was investigated using stable carbon and nitrogen isotopes. Organic matter sources and consumers were sampled in two locations with different environmental features (e.g. hydrodynamic regime, open-sea influence, vegetal coverage). Overall more 13C-enriched and 15N-depleted values were found in the central location than in the southern for organic matter sources and consumers. Pelagic consumers (zooplankton and juveniles of transient fish) showed slight spatial differences and in both locations seemed to depend on phytoplankton as the ultimate energy source. In contrast, benthic consumers (epifauna and resident fish) exhibited remarkable differences between locations. Spatial differences in organic matter sources were smaller than in benthic consumers and thus consumers presumably exploited different ultimate organic matter sources in the two locations. Sedimentary organic matter and epiphytes appeared to be the main primary producers transferred within the food web in both locations, and seagrasses seemed to play a non-negligible trophic role in the central location. The results of this paper corroborate the finding food webs are characterised by high spatial variability even on a small spatial scale and environmental heterogeneity more than primary production that seems to influence the trophic role of autotrophs.  相似文献   

13.
In order to identify environmental factors driving the distribution and functioning of deep-sea fauna and the spatial scales of interactions, we carried out a multiple-scale investigation in the Mediterranean basin in which we compared two bathyal plains, located at the same depth (ca. 3000 m), but characterised by contrasting trophic conditions. We investigated meiofaunal abundance, biomass, community structure and biodiversity (expressed as richness of taxa) in relation to sediment characteristics, downward fluxes and food availability in the sediment. Samples were collected at all spatial scales (from small to macroscale) in two seasons. Our results indicated that deep-sea systems with different trophic conditions displayed different responses to the distribution of available energy and its spatio-temporal variability in the sediment. The analysis at a macroscale (>1000 km) indicated that meiofauna were controlled primarily by the trophic inputs to the deep-sea system. Spatial variability of meiofaunal parameters at a mesoscale (>50 km) was highest in the eastern Mediterranean and lowest in the western Mediterranean. Such differences are the consequence of the unpredictable inputs of organic matter in the oligotrophic eastern Mediterranean versus a more homogeneous distribution of food inputs in the mesotrophic western Mediterranean. At a smaller scale (local scale 7 km), in the western Mediterranean, the distribution of meiofaunal parameters was highly homogeneous, reflecting the homogeneous distribution of the food availability in the sediment. Our results indicated that the highly variable input and distribution of food sources in the deep eastern Mediterranean did not provide any “insurance” for the sustainability of the deep-sea faunal assemblages in the long term, thus leading to an uncoupling between resource availability and distribution of organisms. We conclude that the influence of energy availability on the deep-sea faunal distributions change at different spatial scales and that the analysis of spatial variability at mesoscales is crucial for understanding the relationships between deep-sea benthic fauna and environmental drivers.  相似文献   

14.
《Ocean Modelling》2002,4(2):121-135
Numerical studies of surface ocean fronts forced by inhomogeneous buoyancy loss show nonhydrostatic convective plumes coexisting with baroclinic eddies. The character of the vertical overturning depends sensitively on the treatment of the vertical momentum equation in the model. It is less well known how the frontal evolution over scales of O(10 km) is affected by these dynamics. Here, we compare highly resolved numerical experiments using nonhydrostatic and hydrostatic models and the convective-adjustment parametrization. The impact of nonhydrostatic processes on average cross-frontal transfer is weak compared to the effect of the O(1 km) scale baroclinic motions. For water-mass distribution and formation rate nonhydrostatic dynamics have similar influence to the baroclinic eddies although adequate resolution of the gradients in forcing fluxes is more important. The overall implication is that including nonhydrostatic surface frontal dynamics in ocean general circulation models will have only a minor effect on scales of O(1 km) and greater.  相似文献   

15.
The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.  相似文献   

16.
We use inverse analysis to model carbon and nitrogen flows in the upper ocean food web at Ocean Station Papa (OSP; 50°N, 145°W) for winter, spring, and late summer. The seasonal variability in basic physical, chemical, and biological characteristics is low, and the particulate carbon and nitrogen flux at 200 m is remarkably constant. Despite this apparent uniformity, the food web structure undergoes significant seasonal changes. The diversity of trophic pathways is higher during late summer than during the other two periods. The spring ecosystem is not in steady state and undergoes net phytoplankton growth and macronutrient consumption. The microbial loop is well developed only during late summer. Nevertheless, ammonium regeneration by the food web seems insufficient to meet demand by the primary producers. The difference may be due to recycling of dissolved organic nitrogen (urea+free amino acids), a process not represented in the model. The winter food web is the closest to steady state, with nitrate utilisation approximately in balance with export of particulate nitrogen. The inverse analysis suggests two main seasonally invariant features of the NE Pacific ecosystem. First, the major trophic pathway is always from picophytoplankton (0.2–5 μm) to microzooplankton (heterotrophic dinoflagellates and ciliates) to mesozooplankton. This supports the idea of a strong coupling between the microbial and metazoan food webs. Second, much of the primary production (and bacterial production in late summer) is not grazed and is recycled through the detrital pool. Both these features seem to arise from the requirement to conserve nitrogen as well as carbon in the food web. More complete measurements on the microzooplankton 20–200 μm in size, including the small metazoans like nauplii larvae, are required to improve the models presented here.  相似文献   

17.
End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus on enabling two-way interaction, carefully selecting the key functional groups and species, reconciling different time and space scales and the methods of converting between energy, nutrients and mass.  相似文献   

18.
The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean–atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone–anticyclone interaction zones.  相似文献   

19.
20.
This study aimed at establishing the trophic significance of the kelp Laminaria digitata for consumers inhabiting two rocky shores of Northern Brittany (France), displaying contrasted ecological conditions. The general trophic structure did not vary between these two sites, with a wide diversity of filter-feeders and predators, and only 14% of the species sampled belonging to the grazers' trophic group. The diversity of food sources fueling the food web appeared also similar. The food webs comprised four trophic levels and the prevalence of omnivory appeared relatively low compared to previous studies in the same area. Conversely, to the food web structure, which did not differ, the biochemical composition of L. digitata differed between the two sites, and was correlated to a larger diversity of grazers feeding on this kelp in sheltered conditions. This indicated that the spatial variability occurring in the nutritive value of L. digitata is likely to deeply affect the functioning of kelp-associated food webs. The contribution of L. digitata-derived organic matter to the diet of filter-feeders inhabiting these two environments was assessed using the mixing model Isosource, which showed the higher contribution of kelp matter in sheltered conditions. These results highlight the spatial variability that may occur in the functioning of kelp-associated food webs. Moreover, this suggests that hydrodynamics is likely to control the availability of kelp-derived organic matter to local filter-feeders, probably through an increase of detritus export in exposed areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号