首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delft3D在天文潮与风暴潮耦合数值模拟中的应用   总被引:6,自引:0,他引:6  
储鏖 《海洋预报》2004,21(3):29-36
本文应用Delft-3D水动力学计算软件,以长江口地区为例建立的台风风暴潮、天文潮耦合数值预报模型,对台风风暴潮、天文潮两潮耦合预报模式进行探研和分析。该模式不同于以往的单纯台风增水模型与天文潮叠加的风暴潮模式,而是在计算中直接对天文潮和台风风暴潮进行两潮耦合,有效地消除了近岸地区潮波与增水之间叠加的非线性影响。通过模拟台风8114和7708过境对长江口的影响,并与实测数据比较,预报结果和实测水位过程的对比说明,台风风暴潮耦合数值预报模式对增水和高潮的过程预报是准确的,两者在高水位时同步且相差甚微。  相似文献   

2.
一个高分辨率的长江口台风风暴潮数值预报模式及其应用   总被引:13,自引:1,他引:13  
利用河口海岸海洋模式(ECOM-Si)建立了一个适用于长江口区风暴潮的数值预报模式.该模式采用对岸线有较好拟合能力的自然正交水平坐标系统和能分辨较复杂海底地形的垂直σ坐标系统.模式考虑了长江口径流量对风暴潮的影响,部分地考虑了天文潮和风暴潮非线性相互作用对风暴增水的影响.风暴潮预报的大气强迫场用模型气压场和模型风场.利用所建立的模式对长江口区台风风暴潮进行了8个个例模拟,模拟增水与实测增水的峰值相比较,平均绝对误差不足10cm.利用本研究建立的模式,就气象因子对风暴潮位的敏感性进行了数值试验.试验结果表明,台风中心气压降低(升高)20hPa可导致约100cm的风暴潮位升高(或降低).台风最大风速半径误差对台风增水的变化影响也较显著.试验还表明,长江径流量增加1倍(减半),可以造成风暴潮的平均增加25cm(减小13cm).天文潮位相变化对风暴增水的影响数值试验表明,当台风暴潮与天文潮在不同位相相互作用,可使风暴潮位最大增加达70cm或减小90cm.  相似文献   

3.
为提高复杂区域内风暴潮的预测能力,以上海黄浦江、长江口和沿岸近海为研究对象,构建了基于浅水方程的风暴潮模型。模型运用HLLC格式计算通量,具有高空间分辨率,能够模拟风暴潮、天文潮、洪水等多重因素作用下潮水位过程变化。它采用了非结构的四边形和三角形混合网格,适合应用于跨尺度河渠和河口等区域潮汐交互作用的分析模拟。为了验证模型,开展了0012号派比安台风和0509号麦莎台风影响下的潮汐变化过程计算。结果表明,该模型能够分析天文潮和台风组合作用下的潮水位变化,能够满足风暴潮预报要求。  相似文献   

4.
长江口受台风影响严重,台风风暴潮、上游洪峰及天文大潮相遇将致使长江下游至长江口水位暴涨,对沿岸至河口的防汛安全构成严重威胁。基于ADCIRC模型构建东中国海至长江口风暴潮数学模型,模拟9711号台风和0012号台风两场典型台风水位过程。以典型台风为基础构成多种台风路径,分析不同登陆位置和走向对长江沿线风暴增水影响。研究大洪水、不同路径台风、天文大潮共同影响下长江下游沿线风暴增水分布规律。结果表明:登陆位置处于长江口南侧情况下长江河道沿线增水大于正面登陆长江口和北侧登陆型台风;平行于长江河道方向移动的台风造成沿线增水大于斜向穿越长江口的台风,不同台风走向对于风暴增水影响程度小于登陆位置;台风风暴潮、上游洪峰及天文大潮“三碰头”情形下长江沿线增水分布呈单峰型,从大通至江阴不断增大,江阴至中浚维持高位,中浚至口外迅速减小。  相似文献   

5.
长江干流江苏段地处长江下游河口地区,全线位于感潮河段,沿程水位既受上游长江径流、外海潮位、台风的影响,也受到工情变化、支流入汇等影响。长江江苏段现行洪潮设计水位是按《长江流域综合利用规划简要报告》(1990年)中确定的无台风影响水位实施。近年来,由于上游水、沙、工情条件变化,开展上游大通径流、风暴潮、区间入汇等对沿程洪潮水位的影响研究十分必要。建立大通至长江口二维水沙数学模型与外海风暴潮模型,研究不同影响因素作用下长江干流江苏段沿程洪潮设计水位变化。研究成果表明:南京河段水位主要受上游径流影响;江阴以下主要受外海潮汐及风暴潮的影响;南京至江阴段则受上游径流、外海潮汐、风暴潮三者的共同作用影响。外海天文大潮、风暴潮"两碰头"和上游大径流、外海天文大潮与风暴潮"三碰头"引起的沿程增水值呈驼峰分布,最大值分别发生在江阴和天生港附近,最大增幅1.65 m。研究结果已为长江江苏段堤防防洪能力提升工程建设提供技术支撑。  相似文献   

6.
深圳香港海域浪潮耦合模型的建立及其应用   总被引:2,自引:0,他引:2  
姜茜  毛献忠 《海洋学报》2010,32(6):56-63
以河口海岸海洋模型ECOM和第三代海浪模型SWAN为基础,以全球天文潮预报模式TPXO6.2和台风参数模型风场及气压场作为驱动,采用海洋-陆架区-海岸三重嵌套网格,建立了适用于深圳香港水域天文潮-风暴潮-台风浪耦合模型。以0814号台风"黑格比"为算例,进行了耦合模拟计算,计算结果显示,天文潮、风暴潮位和浪高与实测值符合良好,天文潮的均方根误差小于0.15 m,有效波高误差0.9 m,风暴高潮位平均误差0.23 m;并分析了风暴潮位和波浪的相互影响,以及深港水域波浪场的分布,4 m水深考虑风暴潮位影响有效波高提高0.40 m,沿岸波浪增水在0.20 m以内。  相似文献   

7.
铁山港海湾是一个遭受风暴潮灾害影响较为严重的半封闭型海湾,基于有限元海洋数学模型ADCIRC (Advanced Circulation Model)研究了1409号"威马逊"台风期间铁山港海湾的风暴潮特征及非线性作用。结果表明:当考虑天文潮与风暴潮之间的相互作用时,风暴潮水位的计算结果更加准确,只考虑纯台风影响时,计算结果会低估风暴潮增水值,高估减水值,对预报结果造成较大的误差。海湾内部的增水要远大于湾外,但是减水值则相差不大。通过对天文潮和风暴潮非线性作用的影响因子进行分析,风应力的浅水效应可以忽略,但底摩擦项和对流项影响较大。在海湾内部对流项占主导地位,与天文潮的耦合作用也较强;而在湾外,底摩擦项占优势,耦合作用在海湾内外都较强。天文潮与风暴潮相互作用产生的非线性水位在湾顶处最大可达0.94 m,出现在风暴潮最大减水时刻,风暴潮增水发生后有所减弱,非线性水位表现出从湾外向湾内递增的规律。  相似文献   

8.
作为半封闭狭长海湾,铁山湾受风暴潮灾害的影响较为严重。根据多年观测资料和数值模型对铁山湾内的风暴潮水位特征进行了研究。观测资料表明海湾内风暴潮峰值水位受天文潮相位影响较为显著,然后基于ADCIRC风暴潮模型和1409号“威马逊”台风参数,定量评估了天文潮对风暴潮水位的影响。模拟结果表明当考虑天文潮作用时,会显著提高模拟结果精度,然后通过数值实验研究了风暴潮与不同相位天文潮相互作用时的水位变化特征。数值实验结果表明天文潮-风暴潮相互作用引起的非线性水位在涨潮阶段不明显,在高潮位时非线性水位达到负值最大;在落潮时达到正值最大。风暴潮增水峰值由于受到这种非线性效应的影响,在高潮位时数值最小。海湾内非线性作用要远大于外部,非线性效应越强,总水位峰值相对于天文潮高潮位的延迟时间也就越长。  相似文献   

9.
温州洞头中心渔港精细化浪潮耦合数值预报系统研究   总被引:2,自引:0,他引:2  
浙江温州沿海是我国台风风暴潮灾害的重灾区之一。本文基于目前国际上广泛应用的浪潮耦合模型(ADCIRC+SWAN),在洞头中心渔港附近建立了高分辨率的天文潮、风暴潮和近岸浪耦合数值预报系统。该系统综合考虑了天文潮、风暴潮和海浪的实时相互作用,系统对温州及洞头渔港区域的水平分辨率在100 m左右。通过近年来对温州洞头地区影响严重的台风风暴潮(含近岸浪)过程的后报模拟可以看到,该系统均能够较好的模拟天文潮的演进,准确的反映台风过程期间风暴潮、海浪的传播过程,精细化浪潮耦合预报系统采用了Matlab+GUI方式实现了计算结果的人机交互展示。  相似文献   

10.
利用基于有限元方法的ADCIRC模式,并耦合SWAN波浪模式,建立了一个适用于长江口及其邻近海区风暴潮的数值预报模式。该模式采用对岸线有较好拟合能力的无结构网格,综合考虑了波浪、天文潮、风暴潮、径流相互作用。利用该模型对长江口及其邻近海区一系列台风风暴潮进行后报检验,计算结果与实测资料有较好的一致性。最后,利用建立的模式,针对影响长江口地区的两类典型路径台风——近转向型台风和登陆型台风,讨论了气压、风应力、台风路径等因素对增水的贡献;并对台风移动路径与外高桥实测增水强度进行统计分析,给出了台风移动路径、气压梯度和增水强度的定量关系。  相似文献   

11.
采用三角形网格海洋模式ADCIRC-2DDI和海浪模式SWAN双向耦合模式,建立了苏北辐射沙洲海域高精度水动力模型,用以研究该海域天文潮-风暴潮-海浪相互作用。以2012年15号台风"布拉万"为例,分别采用WRF气象模型后报风场和台风模型风场进行台风期间水位和波浪场的数值模拟,与实测资料的对比结果显示模型较准确地模拟出了"布拉万"台风期间的风暴增水与海浪过程,但模拟的极值增水和二次增水时间较实测资料提前了3 h左右。对"布拉万"台风期间模拟结果的分析表明:在浅滩及浅滩前沿水域,水位和海流对海浪模拟结果具有显著影响,是否耦合计算的有效波高差异可达1 m以上;波浪对水位的影响具有空间差异,在水深大于15 m的区域,波浪引起的水位变化小于5 cm,在浅滩区域,波浪引起的水位变化在4~10 cm,是否考虑波浪耦合对漫滩区域的模拟结果影响较大,进行浅滩及浅滩前沿的水动力计算,有必要考虑浪流耦合过程。  相似文献   

12.
东海风暴潮与天文潮的非线性相互作用   总被引:1,自引:0,他引:1  
中国东海的风暴潮具有明显的周期性波动。凤暴潮除了决定于风应力和长波效应外,还受到天文潮与风暴潮相互作用的影响。本文利用一个二维数值模式对天文潮与风暴潮相互作用的水位进行了模拟。我们选取了8114号台风加以计算。计算结果与实测资料基本相符,由此说明水位曲线中的潮周期波动主要是由于天文潮与风暴潮之间的非线性相互作用所致。数值实验还表明,如果考虑到天文潮与风暴潮的相互作用可以显著改善水位的预报精度。  相似文献   

13.
热带气旋影响下上海港水位数值模拟和预报方法研究   总被引:1,自引:0,他引:1  
基于二维台风风暴潮动力-数值模式和二维天文潮动力-数值模式,本文提出了一个包含天文潮和风暴潮非线性相互作用的综合水位数值模拟和数值预报方法。该方法经对1951-1986年间对上海港影响较大的8场台风期间的综合水位进行数值模拟,结果令人满意。运用该方法对9015号台风期间的上海港综合水位的试报和后报结果比较表明,水位误差主要来自台风路径和强度的预报而不是水位预报方法本身。所提出的适用于上海港水位数值  相似文献   

14.
长江口以外海域风暴潮与天文潮的非线性相互作用   总被引:5,自引:2,他引:3  
一个二维数值模式被用于研究长江口以外海域的风暴潮与天文潮的非线性相互作用。用这个模式模拟了 1981年 8114号台风与天文潮共同作用下所引起的风暴潮增水。 8114号台风是近 2 0年中最重要的台风之一。该台风登陆点附近有吴淞验潮站 ,这里有完整的风暴潮水位记录。计算结果与该站实测值符合较好 ,说明模拟是成功的。此外 ,从模拟结果中还可得出一些有益的结论  相似文献   

15.
上海沿岸天文潮与风暴潮非线性相互作用的数值研究   总被引:10,自引:0,他引:10  
运用二维非线性风暴潮,天文潮和联合水位模型8次不同路径的热带气旋引起的上海地区天文潮与风暴潮的非线性相互作用进行了数值研究,讨论了天文潮气与风暴潮非线性相互作用引起的增水特征,分析了控制方程中各非线性项对天文潮与风暴晨线性相互作用引起水位变化的贡献,研究表明,考虑天文潮与风暴的非线性相互作用后,使风暴潮和水位的数值模拟结果得到了改善,非线性底摩擦在控制天文潮和风暴潮非线性相互作用中起重要的作用。而  相似文献   

16.
为了精确模拟"9711"号台风期间风暴潮增减水过程,考虑耦合作用下的非线性,利用Delft3D建立三维天文潮和风暴潮耦合模型,利用实测数据进行了验证,探究了台风经过日照港时风暴潮增减水过程。结果表明:(1)"9711"号台风引起的风暴潮增减水位呈现周期性变化,其变化周期与天文潮周期相近;(2)风暴潮期间,日照港西南侧海域增减水幅度较大,增水时,NE流向与SW流向的潮流在该区域相遇叠加,使增水幅度加重,减水时,该区域潮流由SW向NE流动,使减水幅度加重;(3)非线性引起的水位变化在风暴潮的水位变化过程中起负相关作用。  相似文献   

17.
应仁方  羊天柱 《海洋学报》1986,8(4):423-428
鉴于严重危及上海的洪水水位主要由其近海的台风暴潮所致,本文以长江口及浙北近海的台风增水的数值模型为基础,首先对吴淞8114号台风增水进行数值模拟,确定适当的模拟技术.然后合理地设计出可能发生的假想台风再输入数值模型,计算出可能发生的最大台风增水.最后根据对实际资料中风暴湖与天文潮相互耦合现象的分析,给出吴淞可能的最大高潮位,从而为上海市防洪工程提供论证或设计依据.  相似文献   

18.
黄海风暴潮和天文潮非线性耦合作用的数值研究   总被引:1,自引:2,他引:1  
本文以4个主要分潮之和为开边界输入条件,对黄海天文潮及8114、7708、7303号台风潮与天文潮耦合作用进行数值模拟,计算结果与实测值基本相符,又通过模拟的流场和水位的变化,分析了不同风暴条件下,天文潮与风暴潮及其流场耦合作用的时空变化规律,从水位场流场整体上研究其相互关系及其动力机制。讨论了几种主要动力因素在非线性耦合作用中的作用,取得了一些有益的结果。  相似文献   

19.
超强台风“桑美”及“韦帕”风暴潮预报分析   总被引:1,自引:0,他引:1  
基干河口海岸水动力模型MIKE2l,以及全球潮汐预报模型,建立浙江省沿海天文潮与风暴潮耦合预报模式.针对登陆浙江省的两次超强台风"桑美"和"韦帕",以预报的天文潮潮波和台风参数为依据,进行浙江沿海风暴潮位预报,在路径基本准确的情况下,风暴高潮位预报值与实测值相差17cm,后报精度为12cm,为沿海防汛提供了可靠的依据.  相似文献   

20.
为研究江苏近海海域风暴潮的特性以及为该海域风暴潮增水变化机理及后报做铺垫,本文基于FVCOM(Finite Volume Coast and Ocean Model)海洋模式和Jelesnianski圆形台风风场模型,建立了江苏近海风暴潮数值模型,并对江苏近海的天文潮以及1109号台风和1210号台风引起的风暴潮进行模拟。结合验潮站水位观测,研究了连云港站和吕泗站的天文潮和风暴潮增水过程。我们将风暴潮与天文潮非线性作用下的风暴潮增水和纯风暴潮增水过程进行对比,讨论了天文潮与1109号和1210号台风风暴潮之间的非线性作用引起的增水特征。结果均表明,在天文潮高潮时,天文潮和风暴潮之间的非线性作用可以抑制增水,在天文潮低潮时,天文潮和风暴潮之间的非线性作用有利于增水。除了气象因子以及天文潮和风暴潮之间的非线性作用外,该海区的地理环境也对台风风暴潮增水产生影响。因此对江苏近海的海岸线变化和浅滩地形变化进行敏感性试验,结果表明,本文所设计的海岸线变化对该海域的风暴潮增水影响较小,江苏沿海岸线的向外推移使得江苏海域风暴潮的增水略微上涨,而本文所设计的地形的变化对风暴潮增水影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号