首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The application of a Smoothed Particle Hydrodynamics (SPH) model to simulate the nonlinear interaction between waves and a moored floating breakwater is presented. The main aim is to predict and validate the response of the moored floating structure under the action of periodic waves. The Euler equations together with an artificial viscosity are used as the governing equations to describe the flow field. The motion of the moored floating body is described using the Newton’s second law of motion. The interactions between the waves and structures are modeled by setting a series of SPH particles on the boundary of the structure. The hydrodynamic forces acting on the floating body are evaluated by summing up the interacting forces on the boundary particles from the neighboring fluid particles. The water surface elevations, the movements of the floating body and the moored forces are all calculated and compared with the available experimental data. Good agreements are obtained for the dynamic response and hydrodynamic performance of the floating body. The numerical results of different immersion depths of the floating body are compared with that of the corresponding fixed body. The effects of the relative length and the density of the structure on the performance of the floating body are analyzed.  相似文献   

2.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

3.
In this study, we develop a numerical method for a 3D linear hydroelastic analysis of floating structures with liquid tanks subjected to surface regular water waves and compare the numerical results with experimental tests. Considering direct couplings among structural motion, sloshing, and water waves, a mathematical formulation and a numerical method extended from a recent work [1] are developed. The finite element method is employed for the floating structure and internal fluid in tanks, and the boundary element method is used for the external fluid. The resulting formulation completely incorporates all the interaction terms including hydrostatic stiffness and the irregular frequency effect is removed by introducing the extended boundary integral equations. Through various numerical tests, we verify the proposed numerical method. We also performed 3D hydroelastic experimental tests of a floating production unit (FPU) model in an ocean basin. The measured dynamic motions are compared with the numerical results obtained using the proposed method.  相似文献   

4.
1 .IntroductionRecentlygreatinteresthasbeenshowninthedevelopmentofverylargefloatingstructuressuchasMegaFloatofJapan (Isobe ,1 999)andMOBofUSA (Remmers ,1 999) .Owingtotheirextremelargesizeandgreatflexibility ,thecouplingbetweenthestructuraldeformationandfluidmotionissignifi cant.Thisisatypicalproblemofhydroelasticity .Efficientandaccurateestimationofthehydroelasticresponseofverylargefloatingstructuresinwavesisveryimportantfordesign .Manymethodshavebeenproposedinliteratureforthepredictiono…  相似文献   

5.
In this study, a two-dimensional floating pier consists of single rectangular impermeable pontoon with side supporting pile-columns is studied. The purpose of this study is to present a theoretical solution for the linearized problem of incident waves exerting on a floating pier with pile-restrained. All boundary conditions are linearized in the problem, which is incorporated into a scattering problem and radiation problem with unit displacement. The method of separation of variables is used to solve for velocity potentials. For the radiation problem with unit heave and pitch amplitude, the boundary value problem with non-homogeneous boundary condition beneath the structure is solved by using a solution scheme. By calculating the wave force from velocity potential and solving the equation of motion of the floating structure simultaneously a close form theoretical solution for the problem is developed. The finite element method was also applied to calculate the dynamic responses on the supporting piles subjected to the pontoon motions and incident waves.  相似文献   

6.
《Applied Ocean Research》2005,27(4-5):187-208
In the present paper, the performance of a moored floating breakwater under the action of normal incident waves is investigated in the frequency domain. A three-dimensional hydrodynamic model of the floating body is coupled with a static and dynamic model of the mooring lines, using an iterative procedure. The stiffness coefficients of the mooring lines in six degrees of freedom of the floating breakwater are derived based on the differential changes of mooring lines' tensions caused by the static motions of the floating body. The model of the moored floating system is compared with experimental and numerical results of other investigators. An extensive parametric study is performed to investigate the effect of different configurations (length of mooring lines and draft) on the performance of the moored floating breakwater. The draft of the floating breakwater is changed through the appropriate modification of mooring lines' length. Numerical results demonstrate the effects of the wave characteristics and mooring lines' conditions (slack-taut). The existence of ‘optimum’ configuration of the moored floating breakwater in terms of wave elevation coefficients and mooring lines' forces is clearly demonstrated, through a decision framework.  相似文献   

7.
Nonlinear hydrodynamics of a twin rectangular hull under heave oscillation is analyzed using numerical methods. Two-dimensional nonlinear time-domain solutions to both inviscid and viscous problems are obtained and the results are compared with linear, inviscid frequency-domain results obtained in [26] to quantify nonlinear and viscous effects. Finite-difference methods based on boundary-fitted coordinates are used for solving the governing equations in the time domain [2]. A primitive-variables based projection method [6] is used for the viscous analysis and a mixed Eulerian–Lagrangian formulation [11] for inviscid analysis. The algorithms are validated and the order of accuracy determined by comparing the results obtained from the present algorithm with the experimental results of Vugt [22] for a heaving rectangle in the free surface. The present study on the twin-hull hydrodynamics shows that at large and non-resonant regular frequencies, and small amplitude of body oscillation, the fluid viscosity does not significantly affect the wave motion and the radiation forces. At low frequencies however the viscosity effect is found to be significant even for small amplitude of body oscillation. In particular, the hydrodynamic force obtained from the nonlinear viscous analysis is found to be closer to the linear inviscid force than the nonlinear inviscid force to the linear inviscid force, the reason for which is attributed to the wave dampening effect of viscosity. Since the wave lengths generated at smaller frequencies of oscillation are longer and therefore the waves could have a more significant effect on the dynamic pressure on the bottom of the hulls which contribute to the heave force, the correlation between the heave force and the wave elevation is found to be larger at smaller frequencies. Because of nonlinearity, the wave radiation and wave damping force remained nonzero even at and around the resonant frequencies – with the resonant frequencies as determined in [26] using linear potential flow theory. As to be expected, the nonlinear effect on the wave force is found to be significant at all frequencies for large amplitude of oscillation compared to the hull draft. The effect of viscosity on the force, by flow separation, is also found to be significant for large amplitude of body oscillation.  相似文献   

8.
The coupled system of two side-by-side fixed and/or floating bodies interacting with a large amplitude nonlinear wave is studied using a direct time domain solution method. The numerical model is based on a three-dimensional mixed Eulerian–Lagrangian (MEL) method under certain simplifying approximations permitting Rankine panel scheme to be implemented over a time-invariant boundary surface to solve the boundary value problem for the unknown velocity potentials. A 4th order Adams–Bashforth–Moulton scheme is used for time marching of rigid-body motion histories of the individual bodies and evolution of the free-surface including the gap region in which large resonant fluid motions occur. A systematic study has been carried out to evaluate the performance of the developed time domain method in simulating the forces and motions as well as the fluid motion in the gap region for the two body system under various arrangements and in different wave-headings. At first, the computed numerical results have been validated and verified with computational and experimental results available in literature for standard geometries such as vertical truncated cylinders and rectangular boxes. Secondly, effectiveness of the damping lid model which is introduced to suppress wave resonance in the gap region is investigated including its influence on maximum sway forces on fixed and floating rectangular barges in side-by-side configurations. Thirdly, comparative studies on absolute and relative motion response for two cases (two rectangular barges, and a FLNG-FPSO + shuttle tanker) in side-by-side arrangement are detailed to bring out the importance of nonlinearities arising due to steep nonlinear incident waves. Finally, coupled motions of the two-body system of an FPSO and a shuttle tanker floating in side-by-side configuration in a steep nonlinear wave field are studied in which the two bodies are connected through hawsers, and also the FPSO is moored to the ground. Additionally there is a fender between the two bodies.  相似文献   

9.
孤立波与带窄缝双箱相互作用模拟研究   总被引:1,自引:1,他引:0  
针对孤立波与带窄缝双箱的作用问题,应用时域高阶边界元方法建立了二维数值水槽。其中,自由水面满足完全非线性运动学和动力学边界条件,对瞬时自由表面流体质点采用混合欧拉-拉格朗日法追踪,采用四阶龙格库塔法对下一时刻的自由水面的速度势和波面升高进行更新。采用加速度势法求解物体湿表面的瞬时波浪力。采用推板方法生成孤立波。通过模拟孤立波在直墙上的爬高以及施加在直墙上的波浪力,并与已发表的实验和数值结果对比,验证本数值模型的准确性。通过数值模拟计算研究了窄缝宽度、方箱尺寸对波浪在箱体迎浪侧爬高,窄缝内波面升高,箱体背浪侧透射波高及箱体受波浪荷载的影响。同时研究了有一定时间间隔的双孤立波与带窄缝双箱系统作用问题。  相似文献   

10.
This paper proposes ten types of improved floating breakwaters for experiment with regular waves, based on the experience in the development and manufacture of existing floating breakwaters both at home and abroad, and on the results of experimental studies on the hydraulic characteristics of several types of floating breakwaters. The wave heights before and behind the breakwaters are measured, the movements of floating breakwaters are observed and the chain forces of the floating breakwaters are measured. The paper studies and compares the hydraulic characteristics of the improved rectangular floating breakwaters of which the internal and external structures and their installation methods are changed. Finally the optimal type of structure is selected through experiments.  相似文献   

11.
贺铭  任冰  邱大洪 《海洋工程》2016,(3):421-430
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.  相似文献   

12.
为研究顺应式海洋平台慢漂运动的影响因素,以截断圆柱和漂浮方箱为例进行了不规则波作用下的慢漂运动模型试验。测量了不同系泊刚度条件下的漂浮方箱以及相同系泊刚度条件下的截断圆柱和漂浮方箱在静水中自由衰减运动和在不规则波中的运动响应,并将运动响应分解成一阶波频运动响应和二阶低频运动响应,分析了系泊刚度和浮体形状对浮体运动的影响。通过物理模型试验发现了系泊刚度及浮体形状对顺应式系泊浮体一阶运动标准差和二阶低频运动平均漂移值和标准差的关系。结果表明由于顺应式浮体的固有周期远离波浪谱峰周期时,系泊刚度以及浮体形状对慢漂运动的一阶运动响应影响不大;二阶低频运动相对偏离平衡位置的平均值和标准差均随系泊刚度增大而减小,浮体形状同样对慢漂运动的二阶低频纵荡运动响应影响较大。试验结果为实际海洋工程的外形选择和系泊刚度选择提供数据支持。  相似文献   

13.
Unsteady nonlinear wave motions on the free surface in shallow water and over slopes of various geometries are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier–Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. Either linear or Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with various wave periods and sea bottom slopes in surf zone. The results are compared with other existing computational and experimental results. Agreement between the experimental data and the computation results is good.  相似文献   

14.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

15.
Nonlinear wave effect on the slow drift motion of a floating body   总被引:1,自引:0,他引:1  
The slow drift motion of a floating body in a two-dimensional wave field has been investigated using a time-domain, fully nonlinear numerical model with non-reflective open boundaries. Preliminary computations were conducted for incident bichromatic waves, in which wave theories with different orders were applied in generating the waves required. The results show that the use of low-order theories generates undesirable free waves, and that fourth-order terms contribute markedly to low-frequency input. The motion of a rectangular floating body in response to nonlinear bichromatic waves was computed. The numerical results for small-amplitude incident waves agree reasonably well with the second-order approximation for both the steady and difference-frequency (Δσ) components in the body's motion. For relatively large waves, however, the 2Δσ component becomes predominant compared with the Δσ component. The motion of the body in irregular waves with different wave parameters has also been presented in order to discuss the validity range of a second-order approximation.  相似文献   

16.
Experiments on wave transmission coefficients of floating breakwaters   总被引:1,自引:0,他引:1  
To find a simple, inexpensive, and effective type of floating breakwater for deep-sea aquaculture, we studied three types of structures: the single box, the double box, and the board net. We conducted two-dimensional physical model tests in a wave-current flume in the laboratory to measure the wave transmission coefficients of the three types of breakwaters under regular waves with or without currents. Based on the initial comparison of the wave transmission coefficients, we proposed the use of the board-net floating breakwater for use with fish cages; we then conducted detailed experiments to examine how wave transmission coefficients are affected by several factors, including the width of the board, the row number of the net, the rigidity of the board, and the current velocity. The experimental results show that the board-net floating breakwater, which is a simple and inexpensive type of structure, can effectively protect fish and fish cages and may be adopted for aquaculture engineering in deep-water regions.  相似文献   

17.
In the present study, a novel method is proposed for the separation of the second-order sum- and difference-frequency wave forces—that is, quadratic transfer functions (QTFs)—on a floating body into three components due to wave–wave, wave–motion, and motion–motion action. By applying the new QTF components, the second-order wave forces on a floating body can be strictly computed in the time domain. In this work, the boundary value problems (BVPs) corresponding to the three kinds of QTF components were derived, and non-homogeneous boundary conditions on the free surface and the body surface were obtained. The second-order diffraction potentials were determined using the boundary integral equation method. In the solution procedure, the highly oscillatory and slowly converging integral on the free surface was evaluated in an accurate and effective manner. Furthermore, the application of the QTF components in the time domain was demonstrated. The second-order exciting forces in the time domain were divided into three parts. Each part of these forces was computed via a two-term Volterra series model based on the incident waves, the first-order motion response, and the QTF components. This method was applied to several numerical examples. The results demonstrated that this decomposition yields satisfactory results.  相似文献   

18.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

19.
Based on the dynamic theories of water waves and Mindlin plates,the analytic solution of interaction between surface waves and two-dimensional floating elastic plates with edge-restraint is constructed by use of the Wiener-Hopf technique.Firstly,without regard for elastic edge restraint,the wave-induced responses of elastic floating plate analyzed by the present method are in good agreement with the results from literature and experimental results.Therefore,it can be shown that the present method is valid.Secondly,three end-restraint cases(i.e.,the left-end elastic restraints,the both-end elastic restraints,and the right-end elastic restraints)are proposed to reduce the vibration of floating plates,in which the spring is used to connect the sea bottom and the floating plate's left(or right)edge.The relations between the spring stiffness and the parameters of wave-induced responses of floating plates are discussed.Moreover,the effective method to reduce the vibration of floating elastic plates can be obtained through comparison.  相似文献   

20.
A study of nonlinear heave radiation of two-dimensional single and double hulls has been carried out in the time domain. The problem is analyzed by means of a fully nonlinear mathematical model, referred to as the mixed Eulerian–Lagrangian (MEL) model, which is based on an integral relation formulation coupled with time-integration of the nonlinear free-surface boundary conditions. The integral equation solver is based on a cubic-spline boundary-element scheme in which both potential and velocity continuity conditions can be enforced through the intersection points. The body undergoes periodic forced heave oscillation. By implementing effective wave-absorbing beaches at the two ends of the rectangular numerical tank, long-term steady-state force-histories could be achieved consistently in all computations.Results in terms of radiation forces for rectangular and triangular single- and twin-hull geometries are presented and discussed. Linear hydrodynamic forces in terms of added-mass and damping are validated for the rectangular hull. The Fourier-analyzed results reveal the extent of nonlinear (higher-order) components in the force-signals over different parameters which include the amplitudes of oscillation, hull-spacing for the twin-hulls and water depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号