首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Time series of velocity and water temperature were measured at three stations on the continental shelf, on the shelf margin and on the slope off the northwest Tokunoshima in December 1980 to study influences of the slope on tides.Tidal currents with semidiurnal periods were dominant at the stations on the shelf and shelf margin. However, semidiurnal components in temperature fluctuations were dominant at the stations on the shelf margin and the slope. We estimated horizontal currents due to semidiurnal internal tides from the vertical distribution of water density and temperature, assuming that the temperature fluctuations were caused by the vertical displacement of water particles due to semidiurnal internal tides. The tidal ellipses at the station on the shelf and the phase relation of the tidal currents between the two stations on the shelf and shelf margin indicated that the M2 surface tide on the shelf was a Sverdrup wave propagating to the northwest.Semidiurnal tidal currents on the slope were also caused by tides of surface and internal modes. Furthermore, the axis of the tidal ellipse was not perpendicular to the co-tidal line estimated by Ogura (1934) but rather parallel to the isobaths on the slope, which shows a striking effect of the bottom topography on the tidal currents.  相似文献   

2.
南海东沙岛西南大陆坡内潮特征   总被引:2,自引:0,他引:2  
2008年4月-10月,在南海东沙岛西南大陆坡底部布放了1套全剖面锚系,同时沿大陆坡底部布放了3套近底锚系,应用谱分析和调和分析方法分析温度和海流连续观测资料,进而研究该海域的内潮特征.结果表明,东沙岛西南大陆坡存在强内潮现象,大陆坡底部温度变化受到内潮波的影响,上层海洋存在强日潮周期的内潮波振动;正压潮和斜压潮均以O...  相似文献   

3.
Current measurements in the surface layer in Sagami and Suruga Bays showed existence of significant tidal currents which are considered to be mainly due to internal tides (Inaba, 1982; Ohwaki,ea al., 1991). In addition, the prevailing period of the tidal currents is semidiurnal in Sagami Bay, but diurnal in Suruga Bay. To explain this difference in the prevailing, periods, numerical experiments were carried out using a two layer model. The internal tides are generated on the Izu Ridge outside the two bays. The semidiurnal internal tide propagates into Sagami Bay having characteristics of an internal inertia-gravity wave, while it propagates into Suruga Bay having characteristics of either an internal inertia-gravity wave or an internal Kelvin wave. The diurnal internal tide behaves only as an internal Kelvin wave, because the diurnal period is longer than the inertia period. Thus, the diurnal internal tide generated on the Izu Ridge can be propagated into Suruga Bay, while it cannot propagate into the inner region of Sagami Bay, though it is trapped around Oshima Island, which is located at the mouth of Sagami Bay. The difference in the propagation characteristics between the semidiurnal and diurnal internal tides can give a mechanism to explain the difference in the prevailing periods of the internal tides between Sagami and Suruga Bays.  相似文献   

4.
Tidal currents observed in a surface layer overlying deep water in Sagami and Suruga Bays frequently have large amplitude in summer and fall. Numerical experiments show that the current amplitude due to the surface tides is below 1.0 cm sec–1 for the semidiurnal and diurnal constituents in the inner region of the two bays. The observed current amplitudes are larger than the calculated ones due to the surface tides. Therefore, the observed tidal currents are indicated to be due mainly to the internal tides. In addition, the semidiurnal currents dominate the diurnal currents in Sagami Bay, while the opposite occurs in Suruga Bay. These results suggest that the prevailing periods of the internal tides differ between the two bays,i.e., the internal tide has a semidiurnal period in Sagami Bay and a diurnal period in Suruga Bay.  相似文献   

5.
An array of three bottom-mounted ADCP moorings was deployed on the prevailing propagation path of strong internal tides for nearly 1 year across the continental slope in the northern South China Sea. These velocity measurements are used to study the intra-annual variability of diurnal and semidiurnal internal tidal energy in the region. A numerical model, the Luzon Strait Ocean Nowcast/Forecast System developed at the U.S. Naval Research Laboratory that covers the northern South China Sea and the Kuroshio, is used to interpret the observed variation of internal tidal energy on the Dongsha slope. Internal tides are generated primarily at the two submarine ridges in the Luzon Strait. At the western ridge generation site, the westward energy flux of the diurnal internal tide is sensitive to the stratification and isopycnal slope associated with the Kuroshio. The horizontal shear at the Kuroshio front does not modify the propagation path of either diurnal or semidiurnal tides because the relative vorticity of the Kuroshio in Luzon Strait is not strong enough to increase the effective inertial frequency to the intrinsic frequency of the internal tides. The variation of internal tidal energy on the continental slope and Dongsha plateau can be attributed to the variation in tidal beam propagation in the northern South China Sea.  相似文献   

6.
Current measurements were conducted 10 m below the sea surface near the head of Suruga Bay intermittently from 1970 to 1978. The circulation pattern is usually counterclockwise; northward along the east coast (off Heda and at the mouth of Uchiura Inlet), westward along the north coast (off Fuji), and southwestward along the west coast (off Shimizu). The amplitudes of the four major tidal constituents of current variation, M2, S2, K1 and O1, are much larger than those expected from sea level variations along the coast. The amplitudes of the diurnal constituents of current variation are much larger than those of the semidiurnal constituents, while the amplitudes of the semidiurnal constituents of sea level variation are much larger than those of the diurnal constituents. The observed amplitude of the predominant diurnal constituents exhibit large seasonal changes and tend to increase with the development of the stratification of the upper part of the water in Suruga Bay. These facts strongly suggest that the observed current variations are mainly associated with internal tides in Suruga Bay.  相似文献   

7.
Long-term hourly data from 12 tide gauge stations were used to examine the character of tidal oscillations in the Caspian Sea. Diurnal and semidiurnal tidal peaks are well-defined in sea level spectra in the Middle and South Caspian basins. High-resolution spectral analysis revealed that the diurnal sea level oscillations in the Middle Caspian Basin have a gravitational origin, while those in the South Caspian Basin are mainly caused by radiational effects: the amplitude of diurnal radiational harmonic S1 is much higher than those of gravitational harmonics О1, P1, and K1. In the North Caspian Basin, there are no gravitational tides and only weak radiational tides are observed. A semidiurnal type of tide is predominant in the Middle and South Caspian basins. Harmonic analysis of the tides for individual annual series with subsequent vector averaging over the entire observational period was applied to estimate the mean amplitudes and phases of major tidal constituents. The amplitude of the M2 harmonic reaches 5.4 cm in the South Caspian Basin (at Aladga). A maximum tidal range of 21 cm was found at the Aladga station in the southeastern part of the Caspian Sea, whereas the tidal range in the western part of the South Caspian Basin varies from 5 to 10 cm.  相似文献   

8.
南麂岛附近海域潮汐和潮流的特征   总被引:4,自引:2,他引:2  
以2008年冬季在浙江近海南麂岛附近投放的4个底锚系观测的水位和流速资料为依据,分析了潮汐和潮流特征。水位谱分析结果显示半日分潮最显著,全日分潮其次;近岸的浅水分潮比离岸大。水位调和分析结果表明:潮汐类型均为正规半日潮,近岸处的平均潮差大于3m,最大可能潮差大于6m,潮汐呈现出显著的低潮日不等和回归潮特征。流速谱分析结果显示半日分潮流最强,全日分潮流其次,且比半日分潮流小得多;近岸浅水分潮流比远离岸显著。流速调和分析结果表明:潮流类型均为正规半日潮流,靠近岸的两个站浅水分潮流较显著;最显著的半日分潮流是M2分潮流,其最大流速介于0.32~0.48m/s之间,全日分潮流均很弱,最大流速小于0.06m/s。M2分潮流均为逆时针旋转,椭圆率越靠近海底越大;最大分潮流流速分布为中上层最大、表层略小、底层最小;最大分潮流流速方向的垂向变化很小,底层比表层略为偏左;最大分潮流流速到达时间随深度的加深而提前,底层比中上层约提前30min。潮流椭圆的垂向分布显示这里的半日分潮流以正压潮流为主;日分潮流则表现出很强的斜压性。  相似文献   

9.
Long-term hourly data from 35 tide gauge stations, including 15 stations in the Gulf of Finland, were used to examine tidal sea level oscillations of the Baltic Sea. High-resolution spectral analysis revealed the well-defined fine structure of tidal peaks with diurnal peaks at most stations being higher than semidiurnal. At some stations (e.g., Narva, Daugava, and Wladyslawowo), high frequency radiational tidal peaks with periods multiple of the solar day (3, 4, 5, 6, and 8 cpd) were detected; the respective oscillations are supposed to be caused by seabreeze winds. Harmonic analysis of tides for individual yearly sea level series followed by vector averaging over the entire observational period was used to estimate the amplitudes and phases of 16 tidal constituents. The maximum tidal oscillations of 17–19 cm were found to be observed in the Gulf of Finland and, first of all, in Neva Bay (in the head of the gulf). Diurnal or mixed diurnal tides are predominant in almost the entire Baltic Sea. The comparison of the observed tides with those theoretically computed showed that the existing numerical models of the main tidal harmonics generally quite accurately reproduce the structure of the tides in the Baltic Sea except for some regions of the Gulf of Bothnia.  相似文献   

10.
对粤西海域水东、湛江、硇州岛、南渡和海安验潮站各1年水位资料进行了调和分析及统计。结果表明:粤西海域北部湛江、水东、硇洲岛、南渡4站主要分潮为M_2、K_1、S_2和O_1,是不规则半日潮;而南部海安站主要分潮为O_1和K_1分潮,是不规则日潮。粤西沿岸各站浅水分潮和平均水位从北到南有减小趋势。在日潮不等方面,粤西沿岸验潮站都存在明显的日潮高、日潮时不等现象。日潮时不等总体上从北到南有降低的趋势,北部湛江、水东和硇州岛涨潮时间比落潮长1~1.5 h,南部南渡和海安两站涨、落潮时相差不大。另外,调和分析和经验公式不再适用于南渡站,南渡河入海口处堤闸工程是主要原因。这为粤西海域环境资源开发、航运活动等提供环境支持和保障。  相似文献   

11.
Numerical experiments were performed to explain the observed results of the internal tides in Uchiura Bay. The experiments for the generation of the internal tides in Suruga Bay indicate that the internal tides, generated at the slopes in the bay, are not as large an amplitude as those observed in Uchiura Bay. However, when the semidiurnal internal tides incident through the mouth of Suruga Bay are considered, they are amplified. The amplitude at the head of Uchiura Bay is 6–12 times larger than that at the mouth of Suruga Bay under the summer density structure. Under the fall density structure, the amplitude ratio is approximately 4–6. The amplification of the semidiurnal internal tides in Uchiura Bay is considered to be due to resonance of the longitudinal internal seiche of Uchiura Bay. On the other hand, the calculated diurnal internal tides are not as large as those observed. Therefore, the diurnal internal tides are thought to already have these large amplitudes at the mouth of Suruga Bay. Therefore, from the observations and numerical experiments, it is concluded that the internal tides observed in Uchiura Bay are mostly the internal tides originating from the outer region of Suruga Bay, and the semidiurnal tides are the internal seiche which is resonantly amplified.  相似文献   

12.
东沙群岛西南海域单站潮流及温盐特征分析   总被引:1,自引:0,他引:1  
利用东沙群岛西南海域定点站(20°41’N,115°49’E)3个航次观测的海流、水温资料及同期的温、盐度断面资料,用谱分析方法对该站海流、水温时间序列进行分析。结果表明,该站海流和水温的时间变化都具有明显的全日周期和半日周期波动的特征,潮流为不规则全日潮,主轴顺时针方向旋转。内潮为全日内潮占优,且具有间歇特征。和总流动类似,斜压运动也主要是顺时针方向旋转的。  相似文献   

13.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

14.
Observations of tidal waves between the East and South China Seas (ECS and SCS) over the Taiwan Strait (TS) suggest that the diurnal tides simply appear as one southward-propagating wave from the ECS to the SCS through the TS. The semidiurnal tides, however, behave differently in that they appear as a southward-propagating Kelvin wave in the western TS and a nearly standing wave in the eastern TS, and then diminish rapidly over the shallow shoal in the southern TS. A smaller-domain model, with sea-level boundary conditions derived from a larger-domain tidal model, was first used to simulate tides in the TS to an overall percentage of accuracy of about 90%. Subsequent numerical experiments and theoretical analysis revealed that the southward-propagating semidiurnal tides to be impeded and then reflected as they arrive at an abrupt, deepened step in the topography of the southern TS. This reflection enhances the amplitudes of the incident semidiurnal tides and contributes to the formation of a nearly standing wave in the eastern TS. The southward-propagating diurnal tides in the TS are connected by the diurnal tides in the northern SCS when the amplitudes of the two tide systems are comparable and their phases nearly equal at the step. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
南海北部陆架陆坡区海流观测研究   总被引:3,自引:0,他引:3  
针对2006-2009年期间,南海北部陆架陆坡区3个站ADCP海流连续观测资料,采用功率谱分析、潮流调和分析方法,重点分析了陆架陆坡区100 m,200 m和1 200 m水深海域海流的垂向结构,探讨了环流的季节变化和空间分布特征,特别讨论了南海暖流和北陆坡流的时空变化特征。结果表明,陆架陆坡区潮流类型属于不规则日潮,深水站点中层表现为正规全日潮类型,垂向为"三层结构",甚至更加复杂。O1,K1,M2,S2等分潮总体上为顺时针旋转,在深水站点,基本表现为西北-东南走向的往复流形态。从能量角度看,表层和底层海流中,潮流所占份额较大,分别占30%~40%和40%~50%,中层较小,约为20%。对东沙群岛西南陆架陆坡区环流,观测计算结果证实了西向强流的存在,且垂向结构具有显著的季节变化,在200 m水深处没有明显的南海暖流,只是10~30 m以上层次存在逆风海流。海南岛以东海域连续15个月表层环流的结果表明,冬季明显受到南海暖流的影响,存在东北向的逆风海流,夏秋季的环流表现为西南向,流速较强,夏季也存在逆风情况,造成上述情形的原因可能是该地南海暖流的流轴具有季节性变化——冬季偏南,夏季偏北。  相似文献   

16.
Year long measurements of bottom pressure were made at 2,036 m depth in Sagami Trough, at 2,538 m depth in Suruga Trough, and at 32 m depth in the south of Minami-Daitojima Island. Amplitudes and phase lags of the major constituents of tides were estimated by the response method, and they were compared with the observational results at several tide stations operated by the Japan Meteorological Agency. A comparison with Schwiderski's global models for the eight tidal constituents showed that the amplitudes were in good accordance to one another within 3 cm, and that the differences of phase lags were less than 15°. The largest portion of the variations of the bottom pressure was caused by the tides: the variance of the major eight constituents was more than 98.5% as large as the total variance. The measurements show that tidal waves can be recorded offshore with a sufficient accuracy by the quartz sensors. Drifts of indication of the pressure gauges were significant and they prevented detection of a long-term variation which might be caused by fluctuations of the ocean currents or by the eddies.  相似文献   

17.
The Southern Ocean hosts significant topographic mixing that might be associated with internal tides. Tidal signals are evident in bottom temperature at 1000 m in Drake Passage, suggesting that internal tides with an amplitude of between ∼20 and 200 m may be present. Various necessary conditions for internal tide generation show that the steep topography in and around Drake Passage can initiate internal tides, and recent global tide models have suggested this region to generate very large interface displacements. Here, we present an attempt to detect internal tides in Drake Passage. During the last 10 years, combinations of bottom pressure recorders and inverted echo sounders have been deployed in the region. The bottom pressure recorders measure predominantly the barotropic tide; the inverted echo sounders measure travel time from sea bed to sea surface and therefore are influenced both by sea level (barotropic tide) and internal sound speed (internal tide). By subtracting one from the other, the internal tide should be detectable. Although the technique works successfully around Hawaii, it does not prove the existence of large internal tides in Drake Passage. The detectability of the internal tidal signal in Drake Passage is investigated using a six-layer one-dimensional model to simulate the bottom pressure and travel time signals of a semi-diurnal tide. The temperature and salinity stratification in Drake Passage is sufficiently weak that large vertical excursions are necessary to produce a signal in travel time detectable above the noise in Drake Passage. An internal tide of at least 70 or 20 m in northern and southern Drake Passage, respectively, would be detected. The fact that these are, perhaps surprisingly, not detected by the combination of bottom pressure and travel time, constrains the internal tides in Drake Passage to be ∼20 m in southern Drake Passage, and between 20 and 70 m in northern Drake Passage. The model also predicts that satellite altimetry would not be able to detect internal tides in Drake Passage, but would in the Brazil Basin and Hawaii regions.  相似文献   

18.
In order to investigate the circulation pattern and the characteristics of tidal currents in the sea near the mouth of Suruga Bay, current meausrements were conducted at two stations at near-surface levels during the warm months of the year (late May to early October). The mean currents at the eastern and western stations are inversely correlated with each other: when inflow occurs at the eastern station outflow occurs at the western one andvice versa. The circulation pattern, therefore, can be determined from the mean current at either station,e.g., inflow or outflow at the eastern station corresponds to counterclockwise and clockwise circulation, respectively. The predominant tidal constituents of the measured currents are diurnal while those of the sea level along the bay are semidiurnal. The amplitudes of the diurnal constituents of the current show clear long-term variations besides the semimonthly variation corresponding to the phase of the moon.Variation in the path of the Kuroshio off the bay mouth seems to influence not only the circulation pattern but also the tidal currents in the sea near the bay mouth. When the Kuroshio axis is to the north of Zenisu, a shoal off the eastern side of the bay, the circulation pattern is counterclockwise and the amplitude of the tidal current is small. On the other hand, when the Kuroshio is to the south ofZenisu, the circulation pattern is weakly clockwise or stagnant and the amplitude of the tidal current is large.  相似文献   

19.
Tidal observations on the West Coast,South Island,New Zealand   总被引:1,自引:1,他引:0  
Harmonic tidal constants, calculated from sea surface elevation observations at Jackson Bay on the West Coast of the South Island, are consistent with available semi‐diurnal and diurnal tidal phase distributions. Current observations taken over a 111 day period at mid‐depth in 1505 m of water on the southern flank of the Challenger Plateau and over a 240 day period in 1430 m of water on the South Island western coast continental slope, are subject to tidal analysis. At both sites there is a component of energy flux directed across the isobaths and only at the northern site for the M2 tide is the phase consistent with a dominant progressive barotropic tide. The successive 30 day harmonic constants at the southern continental slope site exhibit a trend in the M2 tidal ellipse speed and ellipticity suggesting the presence of a regular internal tide. Superposition of ‘internal tidal’ and barotropic tidal flows, as prescribed from progressive‐ and standing‐wave elevations, to fit the observations indicates that the ‘internal tide’ is probably associated with the first baroclinic mode. At the current‐meter depths the speeds of the ‘internal tide’ for the M2 tide are about the same as the barotropic speeds, whereas, the S2 ‘internal tide’ speeds are larger than those of the barotropic tide. The consistency of the trend in ellipse parameters lends support to the theoretical progressive trapped barotropic tidal flows being a good approximation to the actual barotropic tide. Some support for the hypothesis that the S2 tide on the West Coast of New Zealand has a substantial standing wave contribution is given by the northern observations, where the ratio of the S2: M2 internal tidal ellipse current amplitudes are substantially larger than the ratio of the elevations, the internal tide being generated by across‐isobath flows.  相似文献   

20.
文章基于沈家门长期潮位站、长峙岛临时潮位站的观测资料和对舟山本岛南部海域多个站位实测的潮流基础数据,采用调和分析法对潮汐潮流进行特征分析。舟山本岛南部附近海域潮汐类型属于规则半日潮,潮差变化和日不等现象明显,有一定的潮汐浅海作用。潮流类型属于以往复流为主的规则半日浅海潮流,实测潮流中涨落潮流速不等、历时不等现象显著,最大流速、平均流速均是大潮大于小潮,涨潮流历时长于落潮流历时,潮流变化主要受协振波所控制,流向在涨落潮方向波动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号