首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each year in the world, there is significant amount of dredged slurries generated during geotechnical jobs. In the slurry storage process, the rheological behavior is a key factor affecting the motion of dredged slurries. To gain better understanding on this behavior, experiments on dredged slurries with different liquid limits are conducted using rotary viscometer. It has been found that, as water content increases, slurry property can change from Bingham plastic fluids to Newtonian fluids. In log–log coordinates, their corresponding yield stress and plastic viscosity are in linear relationship with their water contents and the intersection of these two lines can be treated as the turning point which is 4.7 times the liquid limit. The yield stress and plastic viscosity of different dredged slurries can be normalized efficiently using normalized water content. So, in this paper, a new quantitative prediction method for yield stress and plastic viscosity is proposed, which is effective for use in alkined modes of motion, is proposed.  相似文献   

2.
-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method in a system of nonorthogonal coordinates which is fitted to the phase-averaged wave surface. The predicted drift current is fairly reasonable and the drag coefficient of sea-surface predicted with the newly developed interface conditions shows good agreement with previous measurements when breaking waves do not exist.  相似文献   

3.
4.
A finite difference solution of the shear flow over a circular cylinder   总被引:2,自引:0,他引:2  
The incompressible viscous shear flow past a circular cylinder is analyzed by solving two-dimensional Navier-Stokes equations and pressure Poisson equation using a finite difference method. The shear flow is calculated for Reynolds numbers from 80 to 1000, and shear parameters up to 0.25. The numerical results indicate that the vortex shedding persists at the shear parameters up to 0.25 for the present Reynolds number range. The Strouhal number and the drag coefficient decrease as the shear parameter increases. There is a transverse force acting from the high velocity side toward the low velocity side in the shear flow.  相似文献   

5.
The phenomenon of drag reduction by the injection of micro-bubbles into turbulent boundary layer has been investigated using an Eulerian-Eulerian two-fluid model. Multiple-size group (MUSIG) based on population balance models, which resolve a wide range of bubble sizes taking into account the bubble break-up and coalescence have been used for this purpose. The simulated results are compared against the experimental findings of Madavan et al. [1984. Reduction of turbulent skin friction by micro-bubbles. Physics of Fluids 27, 356-363] and also other numerical studies explaining the sophisticated phenomena of drag reduction. For the two Reynolds number cases considered, the buoyancy with the plate on the bottom configuration is investigated, as from the experiments it is seen that buoyancy seem to play a role in the drag reduction. Numerical model employed in the investigation comprises of a micro-bubble laden flow wherein two independent sets of Reynolds averaged Navier-Stokes (RANS) transport equations were used to describe both the phases of the flow. The shear stress transport (SST) turbulence model is used as the turbulent closure for the primary phase and a zero equation turbulence model is used for the micro-bubbles. Change in the mean streamwise velocity profiles, void fraction, turbulence modification and other results are presented and discussed with corresponding change in the gas injection rates. The complex mechanism of drag reduction are scrutinised and explained in context to our numerical findings. Special attentions have been also devoted to divulge the effect of bubble coalescence and break-up caused by random collision and turbulent impact. Numerical results showed good agreement for the skin-friction coefficients against experimental data throughout various air injection rates. The MUSIG model was found to be one of the best candidates to resolve the bubble dynamics in micro-bubble-induced drag reduction problems.  相似文献   

6.
潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟   总被引:14,自引:1,他引:13  
根据近岸带及河口区潮流、波浪、湍流各自物理尺度的不同,从Navier-Stokes方程和质量传输方程出发,利用Reynolds分解的方法,建立了模拟波浪 流联合输沙及海床冲淤演变的理论体系,给出了潮流作用下近岸波浪传播方程、波浪作用下潮流运动方程并通过利用波流合成底部切应力、底层湍流脉动随机特性,得出了波流联合作用下不平衡沙计算中泥沙起悬与沉降量的确定方法。本文模型应用于“广西合浦围垦工程潮流波浪  相似文献   

7.
This work presents a new model for wave and submerged vegetation which couples the flow motion with the plant deformation. The IH-2VOF model is extended to solve the Reynolds Average Navier–Stokes equations including the presence of a vegetation field by means of a drag force. Turbulence is modeled using a kε equation which takes into account the effect of vegetation by an approximation of dispersive fluxes using the drag force produce by the plant. The plant motion is solved accounting for inertia, damping, restoring, gravitational, Froude–Krylov and hydrodynamic mass forces. The resulting model is validated with small and large-scale experiments with a high degree of accuracy for both no swaying and swaying plants. Two new formulations of the drag coefficient are provided extending the range of applicability of existing formulae to lower Reynolds number.  相似文献   

8.
Alim Yildiz   《Ocean Engineering》1983,10(6):403-420
This paper deals with obtaining the governing equations of rolling motion of a ship with a flooded compartment. The equations of motion are obtained through the variational formulation in the form of Hamilton-Ostrogradskii equation by taking the ship, the fluid in the flooded compartment and the sea as a single mechanical system. Since no specification concerning ships or flooded compartments has been made, the obtained equations are applicable to any sea-going vessel. As an application, the equation of rolling motion of a ship with a prismatic flooded compartment is obtained by choosing a suitable velocity potential for the fluid motion in the compartment.  相似文献   

9.
《Marine Models》2002,2(1-4):35-56
We present a software environment, implemented in Matlab, which addresses a sphere moving steadily in a fluid. The sphere leaks solute which is transported through the fluid. The environment allows the fluid flow to be approximated with Stokes' flow, or the Navier–Stokes equations can be solved numerically. Subsequently, the advection–diffusion equation for the concentration of the solute is solved numerically. Our purpose for developing the environment was to investigate solute concentrations around sinking marine snow, but the environment has more general applicability. The allowable parameter range depends on computational ressources; on our PC we investigated Reynolds numbers up to 20 and Peclet numbers up to 20,000. The environment features a graphical user interface which makes it useful to people who have never used Matlab, but the experienced Matlab user can also operate from the command prompt.  相似文献   

10.
11.
由于在前壁上设置了尺寸较小的孔,开孔沉箱受流体黏性力作用显著,依照弗劳德数相似准则设计模型存在比尺效应。为揭示比尺效应,建立了模拟波浪与开孔沉箱相互作用的光滑粒子流体动力学(SPH)模型。其中流体运动由连续性方程和Navier-Stokes方程控制,固壁边界由改进的动力边界粒子施加。模型收敛性通过分析不同粒子分辨率下的波浪反射系数得到,模型精度通过比较计算与理论波浪反射系数证明。使用经过验证的SPH模型,计算并比较了不同几何比尺和开孔率下开孔沉箱附近的涡量场、箱体外侧的波面时程曲线和波浪反射系数。结果表明,随着模型几何比尺的减小,开孔沉箱受到偏大的流体黏性力,致使更多波能在湍流运动中耗散,进而减小了波浪反射系数并降低了箱体外侧的波面高度。  相似文献   

12.
Analysis of a craft with two degrees of freedom (2DOF) consumes time more than simulation of a craft with a fixed trim condition; therefore in most of the previous researches fixed trim condition is taken into account to analyze the flow field around a craft in shallow water and head sea wave conditions. In this paper numerical simulation of Reynolds Average Naiver Stokes (RANS) equations are used to analyze the motion of DTMB 62 model 4667-1 planing vessel in calm water and head sea waves in both deep and shallow water with two degrees of freedom (heave and pitch). For this purpose, a finite volume ANSYS-FLUENT code is used to solve the Navier-Stokes equations for the simulation of the flow field around the vessel. In addition, an explicit VOF scheme and SST k-ω model is used with dynamic mesh scheme to capture the interface of a two-phase flow and to model the turbulence respectively in the 2DOF model.Regarding the results, reducing the wavelength and also the depth of the water can increase the drag force. Also comparing the results of a fixed trim vessel with the results of a free to sink and trim one in calm water shows a difference of approximately 50% in the drag force in shallow water.  相似文献   

13.
A numerical model, based on Reynolds equations, was developed to estimate the drag coefficient of a probe. The relation of the displacement of the probe and time was obtained applying the drag coefficients to equations governing the motion of the probe. Experiments were conducted for verification of the calculations. To count in the influence of probe's weight and seawater's density, numerical analysis were carried out. Results indicate both the change of probe's weight due to wire releasing and the difference of density of the different sea area have accumulated influence on the trace of probe and should not be neglected.  相似文献   

14.
Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.  相似文献   

15.
A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.  相似文献   

16.
Under conditions common in muddy coastal and estuarine environments, acoustic Doppler velocimeters (ADVs) can serve to estimate sediment settling velocity (w s) by assuming a balance between upward turbulent Reynolds flux and downward gravitational settling. Advantages of this method include simple instrument deployment, lack of flow disturbance, and relative insensitivity to biofouling and water column stratification. Although this method is being used with increasing frequency in coastal and estuarine environments, to date it has received little direct ground truthing. This study compared in situ estimates of w s inferred by a 5-MHz ADV to independent in situ observations from a high-definition video settling column over the course of a flood tide in the bottom boundary layer of the York River estuary, Virginia, USA. The ADV-based measurements were found to agree with those of the settling column when the current speed at about 40 cm above the bed was greater than about 20 cm/s. This corresponded to periods when the estimated magnitude of the settling term in the suspended sediment continuity equation was four or more times larger than the time rate of change of concentration. For ADV observations restricted to these conditions, ADV-based estimates of w s (mean 0.48±0.04 mm/s) were highly consistent with those observed by the settling column (mean 0.45±0.02 mm/s). However, the ADV-based method for estimating w s was sensitive to the prescribed concentration of the non-settling washload, C wash. In an objective operational definition, C wash can be set equal to the lowest suspended solids concentration observed around slack water.  相似文献   

17.
Wave attenuation characteristics of a tethered float system have been investigated for various wave heights, wave periods, water depths, depths of submergence of floats and float sizes. As the floats are similar in size and shape, only a single tethered spherical float is considered for the theoretical analysis. Float motion is determined through the dynamical equation of motion, developed for a single degree of freedom. From incident and transmitted wave powers, transmission coefficients are computed. The results show that transmission coefficient does not vary with changes in wave height or water depth. When depth of submergence of float increases, wave attenuation decreases, showing that the system performs well when it is just submerged. As float velocity decreases with increase in float size, transmission coefficient increases with increase in float size. The influence of wave period on wave attenuation is remarkable compared to other parameters. The effect of drag on wave attenuation is studied for varying drag coefficient values. Theoretical results are compared with experimental values and it is found that theory overestimates wave attenuation which may probably be due to various linearisations involved in the theoretical formulation.  相似文献   

18.
Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.  相似文献   

19.
赵明  滕斌 《中国海洋工程》2004,18(2):267-280
The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a weighted residual method in space. The stable three-step scheme is applied to the momentum equations in the time integration. The numerical model is firstly applied to the computation of the lid-driven cavity flow for its validation. The computed results agree well with the measured data and other numerical results. Then, it is used to simulate the viscous uniform and shear flow over a circular cylinder for Reynolds numbers from lO0 to lO00. The transient time interval before the vortex shedding occurs is shortened considerably by introduction of artificial perturbation. The computed Strouhal number, drag and lift coefficients agree well with the experimental data. The computation shows that the finite element model can be successfully applied to the viscous flow problem.  相似文献   

20.
In this study, the Navier-Stokes equations and the pressure Poisson equation for two-dimensional time-dependent viscous flows are solved with a finite difference method in a curvilinear coordinate system. With this numerical procedure, the vortex shedding flow past a circular cylinder near a wall is investigated. The flow is calculated for a broad range of gap ratios for different Reynolds numbers ranging from 80 to 1000. Based on the numerical solutions, the vortex shedding is observed using various methods, and the mechanism for the vortex shedding suppression at small gap ratios is analyzed. The critical gap ratio at which the vortex shedding is suppressed is identified at different Reynolds numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号