首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence stratigraphy and syndepositional structural slope-break zones define the architecture of the Paleogene syn-rift, lacustrine succession in eastern China's Bohai Bay Basin. Jiyang, Huanghua and Liaohe subbasins are of particular interest and were our primary research objectives. Interpretation of 3D seismic data, well logs and cores reveals: One first-order sequence, 4 second-order sequences, and ten to thirteen third-order sequences were identified on the basis of the tectonic evolution, lithologic assemblage and unconformities in the subbasins of Bohai Bay Basin. Three types of syndepositional paleo-structure styles are recognized in this basin. They are identified as fault controlled, slope-break zone; flexure controlled, slope-break zone; and gentle slope.The three active structural styles affect the sequence stratigraphy. Distinct third-order sequences, within second-order sequences, have variable systems tract architecture due to structuring effects during tectonic episodes. Second-order sequences 1 and 2 were formed during rifting episodes 1 and 2. The development of the third-order sequences within these 2 second-order sequences was controlled by the active NW and NE oriented fault controlled, slope-break zones. Second-order sequence 3 formed during rifting episode 3, the most intense extensional faulting of the basin. Two types of distinctive lacustrine depositional sequence were formed during rifting episode 3: one was developed in an active fault controlled, slope-break zone, the other in an active flexure controlled, slope-break zone. Second-order sequence 4 was formed during the fourth episode of rifting. Syndepositional, fault- and flexure-controlled slope-break zones developed in the subsidence center (shore to offshore areas) of the basin and controlled the architecture of third-order sequences in a way similar to that in second-order sequence 3. Sequences in the gentle slope and syndepositional, flexure controlled slope-break zones were developed in subaerial region.Distribution of lowstand sandbodies was controlled primarily by active structuring on the slope-break zones, and these sandbodies were deposited downdip of the slope-break zones. Sand bodies within lowstand systems tracts have good reservoir quality, and are usually sealed by the shale sediments of the subsequent transgressive systems tract. They are favorable plays for stratigraphic trap exploration.  相似文献   

2.
借助高精度层序地层学、构造地层学、精细沉积体系分析和构造-古地貌恢复的理论和技术手段,对坳陷期松辽湖盆开展了整体性和综合性的再评价。研究认为,拗陷期影响和控制松辽盆地沉积过程的最主要因素是环古松辽湖盆发育的内环坡折带和外环坡折带。可划分为两大类型,即张扭性和压扭性。张扭型坡折以泉头组为代表,压扭型坡折在姚家组最典型。它们各自控制着不同的沉积过程。在此基础上,建立了具有典型代表意义的古松嫩平原沉积模型和古松嫩湖泊三角洲沉积模型。提出了以内、外环坡折为基础的有利勘探方向。  相似文献   

3.
Tectonics is extremely important to the depositional record preserved in continental sedimentary basins, affecting both the formation of sequence boundaries and the filling characters of these sequences. This comprehensive analysis of Paleogene depositional patterns and the sequence compositional types in the Banqiao sub-basin of the Bohai Basin, Eastern China, shows that episodic rifting and differential activity on major faults have resulted in the formation of various types of transfer zones and structural slope-break zones, both of which played significant roles in the formation and distribution of sequence types and depositional systems. Transfer zones controlled the positions of sediment source areas, entry points for sediment into the basin and, as a result, the development of depositional systems. Structural slope-break zones are paleotopographic features where there is a sharp basinward increase in depositional slope that is controlled by fault geometry. The location of structural slope-break zones influenced the distribution of depositional systems and sand bodies. Areas where the structural slope-break zone overlapped with transfer zones were sites for major drainage systems and the preferred positions of delta fans and turbidite fans. The areas controlled by the transfer zone and the structural slope-break zone with the distribution of sand bodies are the favorable place for the prospecting of subtle stratigraphic traps in the Banqiao sub-basin.  相似文献   

4.
The Fula Sub-basin of the Muglad Basin of southern Sudan is an active-fault bounded basin with an area of approximately 3300 km2. The Lower Cretaceous Abu Gabra Formation formed during the first of three rifting cycles. It can be subdivided into five 3rd-order sequences named SQA∼SQE from bottom to top, indicating five stages of tectonostratigraphy and tectonosedimentary evolution. The spatial distribution and temporal evolution of clastic depositional systems are described in this paper based on integrated analysis of seismic, core and well logging data. In the Abu Gabra Formation of the Fula Sub-basin, a variety of depositional systems are recognized, namely, fan delta, braided delta, delta, sublacustrine fan and lacustrine system. The Fula Sub-basin has undergone a complex and phased rifting evolution, and a high abundance of transfer zones developed, causing the resulting distribution and architecture of both the sequence and depositional system to be controlled by various types of transfer zones. The following three types of sequence architectures from northern to southern part of the Fula Sub-basin have been identified: simple dustpan-shaped sequence architecture in the north, transfer-zone sequence stratigraphic architecture in the middle and graben-shaped sequence architecture in the south. The sequence architecture is under the control of the large-scale central transfer zone, and nine models are built to study the effect of at least three categories of small-scale transfer zones on the depositional systems in the Fula Sub-basin. The small-scale transfer zones play significant roles in basin fill, primarily in controlling of the positions of deposit-input points. This study provides valuable insights into tectonic control of depositional systems and sequence architectures in a continental rift basin such as the Fula Sub-basin.  相似文献   

5.
南海北部琼东南盆地中央峡谷成因新认识   总被引:3,自引:0,他引:3  
通过对区域构造断裂体系和逐渐连片的高分辨率三维地震资料的精细解析,认识到琼东南盆地中央峡谷的形成机制除了与晚中新世区域构造变动、大规模海平面下降、充足物源供给以及凹槽型古地形特征等因素相关之外,还存在另外一个非常重要因素:峡谷底部早期隐伏断裂带的存在。研究表明:琼东南盆地中央坳陷带发育平行于陆架坡折的大规模深水峡谷,峡谷底部发育大型走滑断层以及走滑断层派生出一系列次级断层形成的地层破碎带,认识到峡谷的形成、规模以及展布方向均受断裂带影响;相应地峡谷的充填及演化亦是受物源、海平面变化、重力流作用等多种因素共同作用和相互叠加的过程。从而为研究经历了裂陷期和坳陷期盆地演化过程形成的大型峡谷提供了科学依据。  相似文献   

6.
为了更好地揭示南海北部陆坡琼东南盆地晚中新世以来的沉积物输送样式,本次研究将盆地裂后期加速沉降阶段以来的沉积物充填样式作为研究对象,基于前人对这一区域潜在物源区的分析,通过对已有勘探成果的总结和归纳,对深水沉积体的类型进行识别,建立具有成因关系或相同来源的深水沉积体组合,尝试对沉积物输送样式进行划分和归类。研究结果认为,晚中新世以来,琼东南盆地主要存在海南岛物源、莺西物源、南部隆起带物源和神狐隆起物源等4个潜在物源区,沉积物输送样式可划分为垂向沉积物输送、轴向沉积物输送和转向沉积物输送3种类型。  相似文献   

7.
溱潼凹陷属走滑伸展型断陷,应用层序地层学原理和方法,建立了阜一段的层序地层格架,并在阜一段识别出湖泊三角洲和湖泊两大沉积体系。同时结合含砂率与地震属性研究,恢复了阜一段低位域、湖扩域和高位域的沉积体系,认为各体系域沉积体系在时空展布上具有一定的继承性和差异性。综合分析认为,研究区阜一段东部的殷庄—广山地区在低位域时发育大型三角洲沉积体系,主要以前缘河口坝及席状砂沉积为主,可作为良好储集层;西部斜坡带华港—北汉庄地区,低位域及高位域均发育三角洲沉积体系且规模较大,主要为平原河道及前缘河口坝沉积,也可作为很好的油气储层。  相似文献   

8.
The Baiyun Sag, situated at the north continental slope of the South China Sea, is a main sub-unit in the Southern Depression Belt of the Pearl River Mouth Basin. In this Sag, the middle Eocene Wenchang and upper Eocene–lower Oligocene Enping Formations had developed in the evolution stage of continental faulted basin. Seismic stratigraphic sequences and fault structures revealed that the Baiyun Sag was short of long-reaching boundary faults, and that it was a rifted basin greatly influenced by basement faults rather than a typical half-graben. Different from the sags in Northern Depression Belt of the Pearl River Mouth Basin which controlled by large-scale NEE-strike faults, the Baiyun Sag had been controlled by two groups of NWW-strike en echelon fault belts with approximate opposite dips, which developed in the southwest and northeast of this Sag respectively and had played the roles of boundary faults. These en echelon faults, together with narrow synclines, partial flower structures and fluid diapirs, indicated the left-lateral transtensional activities, which had resulted in subsidence center departing to main faults and stretching S-shaped. Moreover, the en echelon faults had constructed many composite transfer zones of relay ramps, and controlled the distribution of sandbodies. The en echelon fault belts are located in accordance with Nw-striking Mesozoic basement faults. Hence the left-lateral transtensional activities were responsible for the Western Pacific Plate subducting and strike slip reactivation of the basement faults. Significantly, NW-striking basement faults had forcefully determined the development of not only the Baiyun Sag but also the Xingning Sag.  相似文献   

9.
青藏高原羌塘盆地晚侏罗世索瓦期沉积特征研究   总被引:1,自引:0,他引:1  
为推进我国石油工业发展丰富石油地质理论,根据野外露头及室内分析化验资料,建立8种相标志,识别出索瓦期沉积相类型有:台地相、台地边缘相、盆地相和海陆过渡相、湖泊相。受北部拉竹龙-金沙江缝合带、中央隆起带和南部班公湖-怒江缝合带的影响,沉积相呈近东西向展布,具南北分带的特点。文章分析了索瓦期的沉积特征,总结了该期的沉积模式。根据研究区的生物特征和沉积特征,推断当时气候是温暖、半干旱的。综合分析认为,索瓦组是羌塘盆地很有潜力的油气勘探目的层,其与上覆雪山组地层可构成有利的含油气组合;而双湖-多涌地区是首选的含油气有利区带。  相似文献   

10.
An important hydrocarbon reservoir is hosted by the third member of the Shahejie Formation (Es3) in the Zhanhua Sag, Bohai Bay Basin. Seismic stratal slices reveal different characteristics of channels and fan-delta lobes between the south (slope break belt) and southwest (gentle slope) areas combined with lithology, wire-line logs and three-dimensional (3-D) seismic data in the southern slope of Zhanhua Sag. And an excellent analogue has been provided for understanding various key depositional evolution of fan-deltas in the slope system (from base to top: Es3L, Es3M and Es3U). The Sedsim, a three-dimensional stratigraphic forward modelling programme, is applied to simulate the evolution of fan-deltas in the southern slope break systems and southwestern gentle slope systems of the Zhanhua Sag by considering a number of key processes and parameters affecting the fan-deltaic deposition from 43 Ma to 38.2 Ma. Modelling results indicate that depositional types and scales evolved from the thickest medium-scale gravel- or sand-rich fan deltas (43 Ma ∼41.4 Ma, Es3L) to the thinnest small-scale mud-rich fan deltas and lacustrine mud (41.4 Ma ∼39.8 Ma, Es3M), and lastly to less thicker larger-scale mixed sand-mud fan deltas (39.8 Ma ∼38.2 Ma, Es3U). The types of slope system, sediment supply and lake-level change are three controlling factors for determining the source-to-sink architecture of the gravel-to mud-rich fan-deltas and sediment-dispersal characteristics. This study has demonstrated that the process-based modelling approach can be effectively used to simulate complex geological environments and quantify controlling factors.  相似文献   

11.
A regional study of the Veracruz Basin provided an excellent view of long-term deepwater sedimentation patterns from an evolving foreland-type basin. The regional seismic and well-log data set allows for an accurate reconstruction of slope and basin-floor depositional patterns, lithologic compositions, and paleogradients from a continuous succession of bathyal strata that span the Miocene to the lower Pliocene. Variations in Miocene and Pliocene deepwater reservoirs can be linked to prevailing slope characteristics. The Miocene basin had a high-gradient, tectonically generated slope, and the Pliocene basin had a low-gradient constructional slope. The Miocene basin owes its steep margin to the tectonic stacking of early Tertiary, Laramide-age thrust sheets. The Miocene margin shed a mixture of coarse elastic sediments (sands, gravels, and cobbles) and fines (silts and clays) that were transported into the deep basin via turbidity currents and debris flows. Channelized deposits dominate the Miocene slope, and reservoirs occur in long-lasting basement-confined canyons and shorter-lived shallower erosional gulleys. Thick and areally-extensive basin-floor fans exist outboard of the strongly channelized Miocene slope. Fan distribution is strongly controlled by synsedimentary contractional anticlines and synclines. In contrast, the latest Miocene to early Pliocene basin development was dominated by a strongly prograding wedge of shelf and slope deposits that was induced by volcanogenic uplift and increased sediment supply. During this phase, turbidite reservoirs are limited to narrow and sinuous deepwater channels that reside at the toe of the constructional clinoforms and areally limited, thinner basinal fans.  相似文献   

12.
The evolution of large-scale paleo-uplifts within sedimentary basins controls the sedimentary provenance, depositional systems and hydrocarbon distributions. This study aims to unravel changes in paleo-geomorphology, interpret sedimentary sequence evolution, and investigate favourable reservoir types and the hydrocarbon distribution during the buried stage of a long-term eroded paleo-uplift, taking the Lower Cretaceous Qingshuihe Formation (K1q) in the Junggar Basin as an example. These research topics have rarely been studied or are poorly understood. This study integrates current drilling production data with outcrop and core analyses, drilling well logs, 3D seismic data interpretations, grading data, physical property comparisons and identified hydrocarbon distributions.After more than 20 million years of differential river erosion and weathering in arid conditions, the large-scale Chemo paleo-uplift within the hinterland area of the basin formed a distinctive valley–monadnock paleo-geomorphology prior to the deposition of K1q. Since the Early Cretaceous, tectonic subsidence and humid conditions have caused the base level (lake level) to rise, leading to backfilling of valleys and burial processes. Two systems tracts in the target strata of K1q, consisting of distinctive depositional systems, can be identified: (1) a lowstand systems tract (LST), which is confined within incised valleys and is mainly composed of gravelly braided rivers and rarely occurring debris flows and (2) an extensive transgressive systems tract (TST), which developed into an almost flat landform and consists of braided river delta to lacustrine depositional systems. Overall, the physical properties of braided river reservoirs in the LST are better than those of the braided river delta reservoirs in the TST. However, the inhomogeneous distributions of carbonate cements cause differences in the physical properties of conglomerate reservoirs in the LST. However, for sandstones in both the LST and TST, coarser grain sizes and better sorting result in better physical properties. Altogether, four types of reservoir can be identified in the study area: Jurassic inner monadnock reservoirs, K1q LST stratigraphic onlap reservoirs, LST structural reservoirs and TST structural reservoirs.  相似文献   

13.
The Eocene Niubao Formation of the Lunpola Basin, a large Cenozoic intermontane basin in central Tibet, is an important potential hydrocarbon source and reservoir unit. It represents ∼20 Myr of lacustrine sedimentation in a half-graben with a sharply fault-bounded northern margin and a low-angle flexural southern margin, resulting in a highly asymmetric distribution of depositional facies and sediment thicknesses along the N-S axis of the basin. An integrated investigation of well-logs, seismic data, cores and outcrops revealed three third-order sequences (SQ1 to SQ3), each representing a cycle of rising and falling lake levels yielding lowstand, transgressive, and highstand systems tracts. Lowstand systems tracts (LST) include delta and fan delta facies spread widely along the gentle southern margin and concentrated narrowly along the steep northern margin of the basin, with sublacustrine fan sand bodies extending into the basin center. Highstand systems tracts (HST) include expanded areas of basin-center shale deposition, with sublacustrine fans, deltas and fan deltas locally developed along the basin margins. Sequence development may reflect episodes of tectonic uplift and base-level changes. The southern margin of the basin exhibits two different structural styles that locally influenced sequence development, i.e., a multi-step fault belt in the south-central sector and a flexure belt in the southeastern sector. The sedimentary model and sequence stratigraphic framework developed in this study demonstrate that N2 (the middle member of Niubao Formation) exhibits superior hydrocarbon potential, characterized by thicker source rocks and a wider distribution of sand-body reservoirs, although N3 (the upper member of Niubao Formation) also has good potential. Fault-controlled lithologic traps are plentiful along the basin margins, representing attractive targets for future exploratory drilling for hydrocarbons.  相似文献   

14.
南黄海盆地古潜山分类及构造特征   总被引:1,自引:0,他引:1  
南黄海是下扬子的主体,奠基于晋宁期变质基底之上,构造演化历经南华纪—早、中三叠世海相地层发育期、晚白垩世—古近纪箕状断陷发育期和新近纪—第四纪坳陷发育期,为一典型地台-断陷-坳陷多层结构的复合盆地。盆地历经多次构造运动改造,古潜山发育,类型多样。在总结前人对古潜山研究的基础上,结合南黄海新近采集的二维地震剖面,对该地区古潜山类型进行了系统划分,并对典型古潜山的构造特征及生储盖匹配关系进行了初步描述。根据成因划分为剥蚀型潜山、拉张型潜山、挤压型潜山和复合型潜山四大类,每一类又可根据形态划分出剥蚀残丘型潜山、拉张翘倾断块型潜山、拉张断阶型潜山、拉张断垒型潜山、挤压褶皱型潜山、拱张褶皱型潜山和褶皱—断块复合型潜山等类型。南黄海盆地古潜山的发育具有分带性,按盆地中潜山的构造位置,分为凸起潜山带、陡坡潜山带、洼陷潜山带和缓坡潜山带,每一构造带发育了不同类型潜山。研究表明南黄海古生界和中生界古潜山数量众多,规模较大,是南黄海地区实现油气突破的一种重要油气藏类型。  相似文献   

15.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

16.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

17.
构造坡折带是由同沉积构造长期活动引起的沉积斜坡明显突变的地带,对盆地充填的可容纳空间和沉积作用可产生重要的影响,构造坡折带和油气资源分布有着较为密切的关系。隐蔽圈闭是沉积盆地油气勘探中后期重点勘探领域。构造坡折带是沉积盆地中隐蔽圈闭最发育的部位之一,多级构造坡折带组合对盆地隐蔽圈闭的发育有一定的影响,多级构造坡折带隐蔽圈闭发育更受到沉积环境和湖平面变化的影响;构造坡折带地区隐蔽圈闭油气成藏良好,高位域和三角洲前缘泥岩是良好的烃源岩,连片砂体和不整合界面及生长断裂是良好的输导条件,生长断裂和高位域泥岩具有良好的封盖作用。  相似文献   

18.
西湖凹陷位于东海陆架盆地东部坳陷带,新生代经历了早期裂陷和晚期挤压的构造作用,挤压反转产生一系列反转构造。反转构造样式包括简单反冲反转或Y字型反转构造、地堑式背冲或对冲反转构造、高角度叠瓦状逆冲构造、后断叠瓦式逆冲构造、反冲叠瓦式逆冲构造、"似花状"背冲构造等。凹陷内发育东缘、中央反转构造带、西部斜坡等3个反转构造带。中央反转构造带反转作用最强,东缘次之,西部斜坡最弱。构造反转样式及其动力学过程主要与半地堑断陷陡坡犁形大断裂带的反转有关。  相似文献   

19.
Along the southeastern Tyrrhenian Sea margin, the Gioia Basin formed as a result of extensional tectonics at the rear of the Maghrebian thrust belt. In the central part of the basin, mass-transport deposits represent up to 80% of its recent infill. The basin-wide Nicotera slump is the deepest mass-transport deposit present in the basin and was followed by sheet turbidite deposition. Above the turbidite package, a mass-transport complex (MTC) formed through the stacking of different mass-transport deposits due to repeated failures of the continental slope and of a base of slope channel levee wedge, which is still preserved in the western side of the basin. The Villafranca frontally-confined slide, a body mainly consisting of coherent blocks, represents the bulk of the MTC. The failure of the Villafranca slide was due to asymmetric loading of a permeable condensed horizon in the thinnest, distal lateral part of the channel levee wedge. The relatively large thickness of the Villafranca slide caused it to remain confined at its toe region. Smaller scale mass-transport deposits, a debris-flow sheet and a debris-flow lobe, followed the Villafranca slide and were sourced from the same headwall area. Their different run out and internal character are possibly a function of the lithology of the material involved in the collapse. A slab slide, characterized by little internal deformation and frontal contractional ridges, originated when seafloor instability propagated towards the north, causing clockwise rotation of a sediment wedge. Along the linear headwall of the slab slide, a localized upslope failure propagation is shown by a small scale re-entrant. The Sicilian margin, along which the Gioia Basin develops, is characterized by strong differential vertical movements due to ongoing extensional tectonics. The effects of both local and regional strong earthquakes are frequently felt in the area. Thus, slope oversteepening and earthquakes are suggested as the more likely causes for the observed repeated events of seafloor failure. In addition, an evolution of the MTC through larger slides controlled by the migration of uplift of the basin bounding submarine ridge, followed by smaller scale failures due to the consequent slope profile modification, is here advanced.  相似文献   

20.
Understanding the controls on coal seam distribution and geometry is fundamental for planning coal seam gas production. In the Jurassic Surat Basin of South East Queensland, Australia, the spatial continuity of coal seams in the Walloon Coal Measures is highly variable and often difficult to map and predict, even with closely spaced (<1000 m) drillings. This paper investigates the frequency and location of thick sandstone in relation to thick coal seams or plies across three broad stratigraphic divisions, Upper Juandah (UJ), Combined Lower Juandah-Taroom (CLJT) and Condamine Coal Measures (CCM), within the Walloon Coal Measures. Basic depositional facies, e.g. channel, floodplain, marginal mire, and coal mire, were interpreted from geophysical logs. An in-house code was used to count the number of coal plies thicker than 2 m, and channel sandstones thicker than 5 m for the UJ and CLJT and 3 m for the CCM at each borehole. Isopleth maps of the numbers of both coal plies and channel sandstones were generated across the basin for the three subdivisions. Results show that there is an upward stratigraphic trend from thick to thin, and then to thick stacked coal plies. This corresponds to a similar vertical thickness change in channel sandstones. The incidence of thick coal and thick sandstone is associated with rising base level within an early transgressive systems tract which was followed by a high stand prior to a regional erosive event above the UJ. Thick and stacked coal plies have a marked tendency to occur in belts adjacent to the thick channel thoroughfares in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号