首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Oceanographic data from the regional data bank, covering a period from 1911 through to 1990, in combination with the climatic tangential wind stress data have been applied to determine the historical fields of summary currents in the north-western tropical Atlantic; currents of the major circulation elements in the active layer have been specified. It has been confirmed that a significant, in terms of climate, transport of surface and subsurface waters by the geostrophic component of the North Brazil current (NBC) to the northern tropical Atlantic does not take place. North-west of 2oN and 45o W, the current turns eastward, thus contributing to the generation of the equatorial countercurrent. The transport of the NBC within a 0–500 m layer near 1o N has been evaluated to be equivalent to 50 Sv, and the mean annual transport of the equatorial countercurrent to 30 Sv. Translated by Vladimir A. Puchkin.  相似文献   

2.
3.
热带大西洋表层环流及其月变化特征的分析   总被引:3,自引:0,他引:3  
邱云  胡建宇 《海洋学报》2004,26(6):1-12
应用1993年4月至2001年3月的TOPEX/Poseidon卫星高度计遥感资料,分析了8 a平均热带大西洋(15°S~25°N,5°~50°W)表层环流结构的月变化特征.研究结果表明:热带大西洋表层环流中高纬度海区流速较小,赤道附近流速较大,表层环流系统大部分流系月变化不明显,部分流系月际波动较显著.具体来说,西南向的北赤道流下半年的纬向流速分量比上半年大.非洲沿岸流在5~11月流向为东北向,在其他月份主要为东南向.北赤道逆流可以分成两部分:25°W以东海区,北赤道逆流常年流向向东,到9月份前后流速达到最大值(约0.25 cm/s);25°W以西海区,7月至翌年1月流向向东,2~6月北赤道逆流减小,并有西向流产生.2°S~2°N,15°W以东海区的南赤道流在1~3月、9~10月流向向东,其他月份流向向西.南赤道流可认为是由南、北两支西向的海流构成,这两支海流的流轴分别位于6°S和1°N,在6~7月北支流速达到最大值0.6 m/s.南美洲纳塔耳东部西北向的北巴西海流流速月际变化不大,在5~6月份流速达到最大值0.3~0.4 m/s.相应的卫星风场遥感资料的分析表明热带大西洋表层环流结构的月变化特征与风场的分布及变化有较好的对应关系.用World Ocean Atlas 2001的月平均温盐数据反演出来的表层地转流场以及卫星跟踪ARGOS漂流浮标观测进行的对比验证表明,上述遥感分析的地转流场结果与水文数据以及海上观测结果一致.  相似文献   

4.
The mean horizontal flow field of the tropical Atlantic Ocean is described between 20°N and 20°S from observations and literature results for three layers of the upper ocean, Tropical Surface Water, Central Water, and Antarctic Intermediate Water. Compared to the subtropical gyres the tropical circulation shows several zonal current and countercurrent bands of smaller meridional and vertical extent. The wind-driven Ekman layer in the upper tens of meters of the ocean masks at some places the flow structure of the Tropical Surface Water layer as is the case for the Angola Gyre in the eastern tropical South Atlantic. Although there are regions with a strong seasonal cycle of the Tropical Surface Water circulation, such as the North Equatorial Countercurrent, large regions of the tropics do not show a significant seasonal cycle. In the Central Water layer below, the eastward North and South Equatorial undercurrents appear imbedded in the westward-flowing South Equatorial Current. The Antarcic Intermediate Water layer contains several zonal current bands south of 3°N, but only weak flow exists north of 3°N. The sparse available data suggest that the Equatorial Intermediate Current as well as the Southern and Northern Intermediate Countercurrents extend zonally across the entire equatorial basin. Due to the convergence of northern and southern water masses, the western tropical Atlantic north of the equator is an important site for the mixture of water masses, but more work is needed to better understand the role of the various zonal under- and countercurrents in cross-equatorial water mass transfer.  相似文献   

5.
The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy (Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.  相似文献   

6.
The leading modes of interannual and long-term variations in the stratospheric and tropospheric circulation and total ozone (TOMS data) and their relations to Northern Hemisphere sea surface temperature (SST) anomalies are investigated using the monthly mean NCEP/NCAR reanalysis data for the winter months of 1958–2003. Strong correlations are indicated between the interannual total ozone variations over Labrador and the North Atlantic and changes in the stratospheric polar vortex. The onset of major stratospheric warmings is connected not only with the strengthening of westerlies at the 500-hPa level in the midlatitude Atlantic, but also with the weakening of tropospheric winds over the north of eastern Siberia and strengthening over the Far East. In years with major stratospheric warmings, abnormally cold winters are observed in Eurasia, especially in eastern Siberia and northeastern China. The calculated simultaneous (with no time lags) correlations of the stratospheric circulation changes with El Niño/La Niña events give evidence of low correlations between the tropical Pacific SST anomalies and the stratospheric dynamics in the Arctic. However, there are high correlations of the extratropical Pacific and Atlantic SST anomalies with interannual tropospheric and stratospheric circulation variations, the stratospheric dynamics being more strongly connected with Pacific SST than with Atlantic SST anomalies. The interannual changes in tropospheric circulation are coupled to SST anomalies in both the Pacific and the Atlantic. Mechanisms of long-term changes in the interactive ocean-atmosphere-ozone layer system are discussed.  相似文献   

7.
In this paper observational data are used to compute drift and geostrophic current components and to evaluate water transport in the upper 0–800 m ocean layer. Water circulation in the south-western Indian Ocean has been shown to differ from the circulation in similar areas of the Atlantic and Pacific Oceans. The West Australian current, closing the anticyclonic gyre, is an intervening flow. On the other hand, within the upper 200 m layer, the current flows southward along the West Australian coast, thereby producing specific hydrological conditions in that region. Translated by Vladimir A. Puchkin.  相似文献   

8.
利用再分析资料以及混合层海温诊断方程, 研究1997—1998与2015—2016年超级厄尔尼诺次年北大西洋海表温度异常(sea surface temperature anomalies, SSTA)的差异及成因。结果显示, 北大西洋SSTA在1998年春季呈明显正负正三极型式分布, 而在2016年呈弱的负正负型态。诊断热带北大西洋SSTA的影响因素表明, 1998年春季暖SSTA除了之前研究强调的海洋表面向大气的潜热输送异常减少, 以及吸收太阳辐射的增加外, 海洋动力过程即Ekman纬向漂流也起着重要的作用。热力过程与厄尔尼诺峰值后出现的北大西洋涛动(North Atlantic Oscillation, NAO)负位相有关, 其可引起亚速尔高压减弱, 产生西南风异常, 通过风-蒸发-海表温度(sea surface temperature, SST)反馈机制使热带北大西洋蒸发减弱, 海表增暖, 沃克环流下沉支的东移对这一增暖也有贡献。与1997—1998厄尔尼诺事件不同, 2015—2016厄尔尼诺事件没有强迫出负位相NAO, 而是出现弱NAO正位相, 热带北大西洋为弱的东风异常, 使海表发生一定的冷却, 形成2016春季北大西洋SSTA与1998年的明显差异。  相似文献   

9.
Low frequency variability in the tropical Atlantic is complex and hard to witness due to the weakness of this signal compared to the dominant seasonal one. TOPEX/Poseidon and Jason provide a new tool to enlighten these topics by offering more than 10 years of continuous altimetric series. In the tropical regions, due to the vanishing of the Coriolis parameter, uncertainties of a few centimeters in sea level can result in large errors on geostrophic velocity which will propagate rapidly over the entire basin. Accuracy is then a crucial problem for these areas. The ARAMIS program (Altimétrie sur un Rail Atlantique et Mesures In Situ) has been developed by the French Institut de Recherche pour le Développement (IRD) and Centre National d'Etudes Spatiales (CNES) organizations in order to get a long-term survey of temperature, salinity and pCO2 structures in the tropical Atlantic along a merchant ship line. The first two ARAMIS cruises, in July 2002 and March 2003, were dedicated to Jason validation. The dynamical contrast between ARAMIS1 and ARAMIS2 is first analyzed here in agreement with seasonal variations of surface fluxes and wind forcing. Comparisons with TOPEX/Poseidon and JASON data are then presented in terms of sea level analysis. New geopotential models such as the Earth Gravitational Model 1996 (EGM96) that have become available with a resolution of undulations on the order of 50 km, are checked to get the absolute signal. Finally, the tropical Atlantic surface circulation characteristics are used to point out the agreements/discrepancies between all in situ/satellite products, as geostrophic current will emphasize the sea level results.  相似文献   

10.
Standard hydrological section data, collected in the eastern Barents Sea in September 1997, have been analyzed using a variational data assimilation technique. This method allows us to obtain temperature, salinity and velocity fields that are consistent with observations and dynamically balanced within the framework of a steady-state model describing large-scale nearly geostrophic circulation. Error bars of the optimized fields are computed by explicit inversion of the Hessian matrix. The optimized velocity field is in agreement with independent velocity observations derived from surface drifter trajectories in the southwestern part of the Barents Sea. Optimized fields provide the following estimates of integral characteristics of the circulation in the region: i) the North Cape current transport is 2.12 ± 0.25 Sv; ii) the Karskie Vorota Strait throughflow is 0.7 ± 0.06 Sv; iii) heat flux with Atlantic water is 4.7 ± 0.16⋅1011 W; iv) salt import from the Atlantic Ocean is 7.41 ± 0.46⋅103 kg/s. The imbalance of the heat budget in the eastern part of the Barents Sea indicates the presence of statistically insignificant surface heat fluxes which are less than 1 W/m2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The geostrophic circulation of active and intermediate layers in the north Tropical Atlantic is analysed on the basis of data collected in the transatlantic study area in 1986–1987. Its seasonal features are also found. Quasi-steady eddy formations and their relation to the bottom topography are considered for the intermediate region. The influence of these formations on the kinematics of large-scale currents in this layer is substantiated. Structures of large-scale tropical cyclonic and anticyclonic eddy formations are specified. A strategy for further studies in the Tropical Atlantic is suggested.Translated by Mikhail M. Trufanov.  相似文献   

12.
We investigated changes in the global distribution of surface-layer salinity by comparing 2003–2007 Argo-float data with annual mean climatological surface-layer salinity data for 1960–1989 from the World Ocean Database 2005. The two datasets showed similar patterns, with low values in subpolar and tropical regions and higher values in the subtropics. The recent Argo data indicate that the contrast between low and high salinity has intensified in all areas except the subpolar North Atlantic. The intensified contrast of the surface layer salinity was maintaining for 2003–2007. Using a simple method, we attempted to estimate evaporation and precipitation changes on the basis of surface-layer salinity changes. The results show a high probability that the global hydrological cycle has increased in the past 30 years.  相似文献   

13.
Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrological climatology—Hydrobase II—is used to estimate the deep ocean circulation pattern and the deep water distribution in the Nordic seas. An improved P-vector method is applied in the geostrophic current calculation which introduces sea surface height gradient to solve the issue that a residual barotropic flow cannot be recognized by traditional method in regions where motionless level does not exist. The volume proportions, spatial distributions and seasonal variations of major water masses are examined and a comparison with other hydrological dataset is carried out. The variations and transports of deep water are investigated based on estimated circulation and water mass distributions. The seasonal variation of deep water volume in the Greenland Basin is around 22×103 km3 whereas significantly weaker in the Lofoten and Norwegian Basins. Annual downstream transports of about 1.54×103 and 0.64×103 km3 are reported between the Greenland/Lofoten and Lofoten/Norwegian Basins. The deep water transport among major basins is generally in the Greenland-Lofoten-Norwegian direction.  相似文献   

14.
The monthly average values of the anomalies of the ocean level (according to the satellite data for 1992–2002) and the annual average dynamic heights (hydrological data) are used to compute the seasonal cycle of geostrophic currents on the surface of the Atlantic Ocean. It is shown that the west and east currents are intensified with a phase difference of several months. At the same time, their latitudinal displacements are quasisynchronous. A delay of the seasonal signal in the east-west direction of about 2–3 months (on the average) is typical of currents in the tropical zone of the Northern Hemisphere. On the contrary, in the South Atlantic, the seasonal signal propagates in the west-east direction and its phase delay can be as large as almost six months. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 60–71, May–June, 2006.  相似文献   

15.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

16.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   

17.
Calculation results are presented for long-term mean annual surface currents in the North Atlantic based on direct drifter measurements and numerical experiments with the ocean general circulation model using both climatic arrays of hydrological data World Ocean Atlas 2009 and Argo profiling data. The calculations show that the technique suggested for model calculations of oceanographic characteristics of the World Ocean with the use of Argo data significantly improves the climatic fields of the temperature and salinity even on a coarse grid. The comparison of the model calculation results with drifter data showed that the temperature and salinity fields found from Argo data with the use of data variational interpolation on a regular grid allow the calculation of realistic currents and can be successfully used as initial conditions in hydrodynamic models of the ocean dynamics.  相似文献   

18.
利用SODA海洋同化资料和NCEP再分析大气资料,分析了热带太平洋次表层海温异常(subsurfaceoceantemperatureanomaly,SOTA)与厄尔尼诺与南方涛动(ElNi?o-SouthernOscillation,ENSO)循环的联系,及SOTA对大气环流的影响。回顾传统ENSO研究,指出存在的问题,提出了ENSO影响大气研究的新思路,得到以下结果:(1)以SOTA为基本资料的研究发现, ENSO事件有两个模态,主要出现在冬季的第一模态对冬季及夏季亚洲-北太平洋-北美地区上空中高纬大气环流有重要影响,主要出现在夏季的第二模态对该地区上空夏季热带和副热带大气系统有重要作用。(2)ENSO事件通过与ENSO相联系的热带太平洋海面温度异常(ENSO-relatedseasurface temperatureanomaly,RSSTA)对大气的异常热通量输送,强迫Walker环流和Hadley环流变化,导致热带和北太平洋及周边地区上空大气环流异常,进而影响相关地区冬季和夏季的气候。(3)海表面温度异常(seasurfacetemperatureanomaly,SSTA)包含RSSTA和大气异常导致的海温变化(sea temperature anomaly caused by atmospheric anomaly, STA)两部分, RSSTA是ENSO事件过程中海洋内部热动力结构调整导致的海面温度变化,在海洋对大气的热输送过程中,它随ENSO事件演变不断更新;STA是大气受RSSTA海洋异常加热后导致的大气环流异常对海面温度的影响,在海洋浅表层STA对RSSTA有重大影响。本文最后讨论了ENSO事件期间热带海洋对大气热输送过程,指出ENSO事件通过海洋内部热动力结构调整产生RSSTA,它直接对大气异常加热,导致大气环流和气候异常,局地海气之间负反馈过程产生STA,反过来抑制RSSTA。结果还指出,人们常用的SSTA变率实际上主要由秋冬季节RSSTA主导,丢失了春夏季ENSO信息,用SSTA研究ENSO事件存在局限性,这也可能是ENSO事件春季预报障碍的原因之一。  相似文献   

19.
基于1951—2018年哈德里中心海温资料、美国气象环境预报中心和美国国家大气研究中心再分析资料和第四代欧洲中心汉堡模式, 针对1994年、2018年等西北太平洋热带气旋(TC)生成异常多的年份, 研究了引起TC增加的海表温度异常(SSTA)模态及其影响机制。结果表明, 北半球热带中太平洋增暖与印度洋变冷是夏季西北太平洋TC生成频数增加的主要原因, 北大西洋负三极型式SSTA促使TC生成的进一步增加。热带中太平洋增暖与印度洋冷却在菲律宾以东激发出西风异常和气旋性环流异常。北大西洋负三极型式SSTA在我国南海、菲律宾至东南沿岸激发出气旋性环流异常。前者在西北太平洋中部, 后者在南海产生有利于TC生成的局地环境。1994年和2018年夏季热带中太平洋出现暖SSTA、印度洋为冷SSTA、北大西洋呈现负三极型式SSTA, 西北太平洋TC生成频数极端增多。近30年来, 当出现热带中太平洋增暖和印度洋冷却时, 北大西洋表现出比1989年以前更强的负三极型式SSTA, 使西北太平洋TC生成频数和北半球热带印度洋-太平洋SSTA梯度的线性相关更显著。  相似文献   

20.
A spatial-temporal analysis of the density field in the large-scale hydrological observation areas in the Tropical Atlantic is carried out. The spectral maximum corresponding to the first baroclinic mode of the planetary Rossby wave is discriminated and studied. It is shown that the seasonal transformation of the large-scale circulation of the current field is connected with the propagation of this wave. A simple quasi-geostrophic model is suggested which describes the seasonal variability of the North Equatorial Countercurrent. The results obtained by this model are compared with the hydrological survey data.Translated by Mikhail M. Trufanov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号