首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
超大型浮体在海洋资源开发和海洋空间利用方面有重要应用前景.非均匀海洋环境中的水弹性响应是其应用中的一个重要问题.在近海中最典型的非均匀海洋环境当属由于底部变化引起的非均匀现象.本文分别采用多重尺度法(零阶近似)和常规的有限水深势流格林函数边界积分法,对底部呈二维缓变情况下超大型浮体的水弹性响应问题进行了研究和对比,并与实验工况进行了对照.两种方法与试验结果吻合较好,证明非均匀海洋环境确实对超大型浮体的水弹性响应具有一定的影响.  相似文献   

2.
《海洋工程》2004,22(4):Z001-Z004
第 2 2卷 ,第 1期 ,2 0 0 4年 2月箱式超大型浮体在非均匀海洋环境下的水弹性试验吕海宁 ,杨建民 ,姚美旺 (1)………………………………………………用直接法分析超大型浮体的水弹性响应张淑华 ,韩满生 (9)………………………………………………………………………海工结构物桩基础竖向稳定性的可靠度分析闫澍旺 ,周宏杰 ,刘 润 ,等 (19)……………………………………………………移动式海上基地多模块间相互作用对连接器载荷的影响余 澜 ,丁 伟 ,李润培 (2 5 )……………………………………………模态试验中传感器优化配置的逐步削减法…  相似文献   

3.
超大型浮式结构物是一种新型海上结构,浮体结构的不同构型对水动力性能有着较大的影响,而合理可靠地预报波浪载荷是保证海洋结构物设计合理和安全运营的基本前提。基于设计波法,采用莫里森公式和势流理论相结合的方法,对纵向浮筒和横向浮筒两种不同构型的超大型浮式结构物进行水动力分析和波浪载荷长期预报并进行对比分析。研究结果表明:横向浮筒超大型浮体纵荡运动相应幅值比纵向浮筒超大型浮体小很多;纵向扭转为纵向浮筒和横向浮筒超大型浮体最危险工况,其次是垂向弯矩工况;且横向浮筒超大型浮体的垂向弯矩也是较危险的工况。分析结果可为超大型海上浮式结构物的结构设计提供相关合理可靠的理论依据。  相似文献   

4.
用直接法分析超大型浮体的水弹性响应   总被引:2,自引:2,他引:2  
探讨了浮舟桥型超大型浮体结构的水弹性响应分析问题。将超大型浮体结构简化成弹性平板模型,用压力分布法计算流体压力,用直接法计算流体-结构系统,给出了它们的数学计算模型。计算表明本计算方法和程序是正确的,并能保证充分的精度,进而计算了更大尺度的超大型浮体,分析了波长、波向等对响应振幅的影响。  相似文献   

5.
箱式超大型浮体的水弹性模型试验   总被引:2,自引:5,他引:2  
近年来,超大型浮体VLFS(Very Large Floating Structure)越来越受到人们的关注和重视。VLFS可以用作开发海洋资源的平台和海上军事基地等,具有很高的经济和军事价值。以海上机场VLFS为研究对象和试验模拟原型,进行了箱式VLFS在波浪作用下的水弹性模型试验,研究了波浪的浪向、周期和水深对VLFS水弹性性能的影响。  相似文献   

6.
箱式超大型浮体结构在规则波中的水弹性响应研究   总被引:3,自引:5,他引:3  
利用三维线性水弹性理论研究了箱式超大型浮体结构在正弦规则波中的动力响应,用Bernoulli-Euler梁解析解计算结构在真空中的动力特性,用弹性体三维势流理论计算结构的水动力系数,浮体结构在单位波幅规则波中的刚体运动幅值与DNV/WADAM程序的计算结果进行了比较,并给出了垂向弯曲模态的位移,弯矩随波浪频率的变化规律,由于箱式浮体结构的低阶固有频率很低,相应的弹性振型的响应与刚体运动耦合,结构在波浪中没有发现明显的低阶弹性模态谐振。  相似文献   

7.
在工程设计中,通常采用模块化方式制造超大型浮式结构物,将巨大的单体结构分割成多个较小模块,后期通过合适的连接器拼装形成。为了明确多模块超大浮体在波浪作用下的水弹性响应,以两个相邻层合浮体(高刚度面板和低密度芯材)为研究对象,建立波浪作用下铰接层合浮体水弹性响应的高阶势流模型。采用匹配特征函数展开法求解流体运动的速度势,探讨了铰接处弹簧刚度对浮体的反射系数、透射系数、挠度、弯矩和剪力的影响规律。研究结果表明:迎浪侧浮体的存在可以有效降低背浪侧浮体的挠度、弯矩和剪力幅值;与垂直弹簧相比,扭转弹簧刚度的增加可以更加有效抑制铰接层合浮体的水弹性响应;当扭转弹簧刚度大于一定值时,继续增大弹簧刚度对浮体的动力响应不产生影响。  相似文献   

8.
不同干结构模型对箱式超大型浮体结构水弹性响应的影响   总被引:1,自引:7,他引:1  
三维线性水弹性力学利用结构在真空中弹性振型的正交性 ,对结构振动进行模态分析 ,用弹性体三维势流理论计算结构的水动力系数。因此 ,结构的干模态计算是十分重要的。应用三维线性水弹性理论研究箱式超大型浮体结构在波浪中的动力响应时 ,分别采用梁模型和三维空间有限元模型计算结构的干模态 ,并且采用同样的水动力模型 (弹性体三维势流理论 )研究了不同干结构模型对结构水弹性响应的影响  相似文献   

9.
海洋潜标技术的应用与发展   总被引:3,自引:0,他引:3  
1 海洋潜标系统 海洋潜标系统又称水下浮标系统,是海洋环境观测的重要设备之一。 海洋潜标系统一般由水下部分和水上机组成。水下部分一般由主浮体(标体)、探测仪器、浮子、锚系系统、释放器等组成。通常,主浮体布放在海面下100m左右或更大深度的水层中,因而避免海表面的扰动;锚系系统将整个系  相似文献   

10.
开发并验证了一种基于CFD-FEM耦合的弹性浮体水弹性响应计算模拟方法。采用CFD方法建立黏性数值水池模拟非线性波浪,弹性浮板进行有限元离散,并在交界面进行数据交互实现耦合计算;通过与水池试验数据和三维板理论在各种波浪环境下的浮体垂向位移结果对比,证实CFD-FEM耦合方法的有效性。并进一步研究了浮板的厚度、入射波波幅和浮板的三维效应对浮板水弹性响应的影响。结论表明,波幅的增加会加剧弹性浮板的水弹性响应,浮板各点处的垂向位移随波幅的增加而增大;当浮板厚度改变时,不同厚度浮板自由端处的垂向位移差异较小,而在中部等位置处,厚度对浮板的水弹性响应有较大的影响。  相似文献   

11.
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy''s law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.  相似文献   

12.
A ring-shaped spar-type Very Large Floating Structure (VLFS) is proposed as an intermediate base for supporting deepwater resource exploitation far away from the coast line. The proposed VLFS is composed of eight rigidly connected deep-draft spar-type modules and an inside harbor. A double-layered perforated-wall breakwater is vertically attached to the VLFS and pierces through the water surface to attenuate the wave energy in the inside harbor. The hydrodynamic performance characteristics of the ring-shaped VLFS was experimentally evaluated in the present study, focusing on the motion responses, wave elevations, and wave run-ups. The natural periods of the motions in vertical plane were determined to be larger than 40 s, which is much larger than common wave periods. This enhanced the motion performance in vertical plane and afforded favorable habitation and operation condition on the VLFS. A large surge damping was induced by the vertical breakwater, which tended to significantly affect the surge and pitch motions, but had a negligible effect on the heave motion. The component frequencies of the wave elevations in the inside harbor and the wave run-ups were identical with those of the incident waves. The wave attenuation was frequency-dependent and effective for the common wave frequencies, with a smaller loss coefficient observed in higher sea state. The wave attenuation and wave run-ups tended to improve in the absence of the leeward walls.  相似文献   

13.
1 .IntroductionIntheexploitationofoceanresourcesandintheutilizationofoceanspaces,verylargefloatingstructures (VLFS)suchasMega FloatinJapan (Isobe ,1 999)andMobileOffshoreBase (MOB)inUSA (Remmers ,1 999)playasignificantrole .However,owingtotheirlargesizesandrelativelylowbendingrigidities ,theirhydroelasticresponsesinwavesareofthemostconcern .ManystudieshavebeencarriedoutforthepredictionofthehydroelasticresponsesofVLFS′s (Kashiwagi,2 0 0 0 ;Cui,2 0 0 2 ) .However,inalmostallofthesestu…  相似文献   

14.
A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport, is proposed. The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea. The feasibility demonstration of the conceptual design includes two parts: function verification and structure design. In the latter part of the conceptual design, a time-domain structural analysis is firstly conducted by using Abaqus software. The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization, although both structure safety of the piles and positioning accuracy are guaranteed. To realize a cost reduction of construction and installation, a Genetic Algorithm-Finite Element Analysis(GA-FEA) method is employed to perform structural optimization. After optimization, 31 percent of the weight of each pile is reduced and higher structure utilization is maintained. The difference of the self-weight and allowable buoyancy of a single module(SMOD) of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work, the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible.  相似文献   

15.
The hydroelastic responses of a very-long floating structure (VLFS) in waves connected to a floating oscillating-water-column (OWC) breakwater system by a pin are analyzed by making use of the modal expansion method in two dimensions. The Bernoulli–Euler beam equation for the VLFS is coupled with the equations of motions of the breakwater taking account of the geometric and dynamic boundary conditions at the pin. The Legendre polynomials are employed as admissible functions representing the assumed modes of the VLFS with pinned-free-boundary conditions. It has been shown numerically that the deflections, bending moments and shear forces of the VLFS in waves can be reduced significantly by a pin-connected OWC breakwater. The time-mean horizontal drift forces of the VLFS equipped with the breakwater calculated by the near-field method are also presented.  相似文献   

16.
The hydroelastic responses of a very-long floating structure (VLFS) placed behind a reverse T-shape freely floating breakwater with a built-in oscillating water column (OWC) chamber are analyzed in two dimensions. The Bernoulli–Euler beam equation is coupled with the equations of rigid and elastic motions of the breakwater and the VLFS. The interaction of waves between the floating rigid breakwater and the elastic VLFS is formulated in a consistent manner. It has been shown numerically that the structural deflections of the VLFS can be reduced significantly by a suitably designed reverse T-shape floating breakwater.  相似文献   

17.
This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship between interactions and wave headings. Numerical studies were performed by solving the radiation-diffraction problem and were validated against the experimental results. Motion Response Amplitude Operators (RAOs) were obtained from numerical and experimental studies. The dependency of the hydrodynamic interaction effect on wave headings is clarified. The influence of different wave periods on the motion responses of two-module VLFS and wave elevations in the gap is studied. The results indicate that the hydrodynamic interactions of the two modules are directly related to the wave headings and the periods of the incident wave. The shielding effect plays an important role in short wave, and the influence decreases with the increase of the incident wavelength. The numerical results based on the diffraction-radiation code can give a relatively good estimation to the responses in short wave while for long wave, it would over-predict the response.  相似文献   

18.
针对具有天然岛礁庇护或人工庇护的温和海洋环境,提出了一种混合模块大型浮式结构系统,即水动力性能更优的半潜式模块作为内侧主模块,消波效果更优的箱式模块作为外侧浮式防波模块和波浪能发电模块.波浪能装置利用外侧箱式模块与内侧半潜式模块的相对纵摇运动进行发电.考虑模块间多体水动力耦合效应和连接器机械耦合效应,基于ANSYS-AQWA程序重点研究了典型海况下混合5模块串联浮式结构系统的动力响应特征.结果表明,外侧箱式模块和波浪能发电装置能有效减弱内侧半潜式主模块运动响应、连接器动力响应和系泊缆绳张力,并且提供一定的能源供给.所得研究成果可为模块化超大型浮式结构系统的防波—发电集成系统设计提供参考.  相似文献   

19.
This paper presents the use of a modular raft Wave Energy Converter (WEC)-type attachment at the fore edge of a rectangular Very Large Floating Structure (VLFS) for extracting wave energy while reducing hydroelastic responses of the VLFS under wave action. The proposed modular attachment comprises multiple independent auxiliary pontoons (i.e. modules) that are connected to the fore edge of the VLFS with hinges and linear Power Take-Off (PTO) systems. For the hydroelastic analysis, the auxiliary pontoons and the VLFS are modelled by using the Mindlin plate theory while the linear wave theory is used for modelling the fluid motion. The analysis is performed in the frequency domain using the hybrid Finite Element-Boundary Element (FE-BE) method. Parametric studies are carried out to investigate the effects of pontoon length, PTO damping coefficient, gap between auxiliary pontoons, and incident wave angle on the power capture factor as well as reductions in the hydroelastic responses of the VLFS with the modular attachment. It is found that in oblique waves, the modular attachment comprising multiple narrow pontoons outperforms the corresponding rigid attachment that consists of a single wide pontoon with respect to the power capture factor and the reduction in the deflection of the VLFS. In addition, it is possible to have a considerable gap between pontoons without significantly compromising the effectiveness of the modular attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号