首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A new predictive formula for the total longshore sediment transport (LST) rate was developed from principles of sediment transport physics assuming that breaking waves mobilize the sediment, which is subsequently moved by a mean current. Six high-quality data sets on hydrodynamics and sediment transport collected during both field and laboratory conditions were employed to evaluate the predictive capability of the new formula. The main parameter of the formula (a transport coefficient), which represents the efficiency of the waves in keeping sand grains in suspension, was expressed through a Dean number based on dimensional analysis. The new formula yields predictions that lie within a factor of 0.5 to 2 of the measured values for 62% of the data points, which is higher than other commonly employed formulas for the LST rate such as the CERC equation or the formulas developed by Inman–Bagnold and Kamphuis, respectively. The new formula is well suited for practical applications in coastal areas, as well as for numerical modeling of sediment transport and shoreline change in the nearshore.  相似文献   

2.
Calculation of longshore sediment transport   总被引:1,自引:0,他引:1  
Calculation approaches to longshore transport of sandy sediments are discussed. The estimation of the total sediment transport rate is shown to be possibly based on the so-called CERC formula, where the proportionality factor K should be calculated from relationships of Bayram et al. [8] or Leont’yev [4]. In both cases, the results are very close to each other if the author’s determination of the wave breaking depth is used. Under the condition of contrasting variations in the sediment grain size over the coastal profile or in the case of fragmentary sand distribution on the surface of the bed, the local approach implying process-based modeling is more effective. A model is suggested to compute the local longshore sediment transport rates.  相似文献   

3.
4.
Using the limit surface slope as a criterion of wave breaking,a simple model for estimatingthe spatial fraction of breaking surface of sea at an instant,which is regarded as the whitecap coverge inthis paper,is analytically derived from the probability density of surface slope based on Gaussianstatistics.The resulting fraction is found depending on the fourth moment of wave spectum,m_4,as well asthe critical threshold of surface slope.By expressing the fourth moment in terms of the Neumannspectrum,a formula linking the fraction and wind speed for fully developed sea states is obtianed.Anotherformula relating the fraction to both wind speed and fetch(or duration)is achieved by expressing m_4 interms of the Krylov spectrum and applying the empirical relationships used in the SMB ocean wave pre-dicting technique.A comparison between these results and the field data of whitecap coverage collected byMonahan and O'Muircheartuigh shows an encouraging agreement.  相似文献   

5.
The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport and design of coastal structures. An efficient numerical model based on the time-dependent mild-slope equation is presented in this paper for the estimation of wave deformation across the surf zone. This model incorporates an approximate nonlinear shoaling formula and an energy dissipation factor due to wave breaking to improve the accuracy of the calculation of wave height deformation prior to wave breaking and also in the surf zone. The model also computes the location of first wave breaking, wave recovery and second wave breaking, if physical condition permits. Good agreement is found upon comparison with experimental data over several one-dimensional beach profiles, including uniform slope, bar and step profiles.  相似文献   

6.
The sediment suspension and transport process under complex breaking wave situation is investigated using large eddy simulation (abbreviated as LES hereafter) method. The coupled level set (LS) and volume of fluid (VOF) method is used to accurately capture the evolution of air?water interface. The wall effect at the bottom is modeled based on the wave friction term while the complicate bottom boundary condition for sediment is tackled using Chou and Fringer’s sediment erosion and deposition flux method. A simulation is carried out to study the sediment suspension and transport process under periodic plunging breaking waves. The comparison between the results by CLSVOF method and those obtained by the LS method is given. It shows that the latter performs as well as the CLSVOF method in the pre-breaking weak-surface deformation situation. However, a serious mass conservation problem in the later stages of wave breaking makes it inappropriate for this study by use of the LS method and thus the CLSVOF method is suggested. The flow field and the distribution of suspended sediment concentration are then analyzed in detail. At the early stage of breaking, the sediment is mainly concentrated near the bottom area. During the wave breaking process, when the entrapped large-scale air bubble travels downward to approach the bottom, strong shear is induced and the sediment is highly entrained.  相似文献   

7.
A fuzzy inference system (FIS) and a hybrid adaptive network-based fuzzy inference system (ANFIS), which combines a fuzzy inference system and a neural network, are used to predict and model longshore sediment transport (LST). The measurement data (field and experimental data) obtained from Kamphuis [1] and Smith et al. [2] were used to develop the model. The FIS and ANFIS models employ five inputs (breaking wave height, breaking wave angle, slope at the breaking point, peak wave period and median grain size) and one output (longshore sediment transport rate). The criteria used to measure the performances of the models include the bias, the root mean square error, the scatter index and the coefficients of determination and correlation. The results indicate that the ANFIS model is superior to the FIS model for predicting LST rates. To verify the ANFIS model, the model was applied to the Karaburun coastal region, which is located along the southwestern coast of the Black Sea. The LST rates obtained from the ANFIS model were compared with the field measurements, the CERC [3] formula, the Kamphuis [1] formula and the numerical model (LITPACK). The percentages of error between the measured rates and the calculated LST rates based on the ANFIS method, the CERC formula (Ksig = 0.39), the calibrated CERC formula (Ksig = 0.08), the Kamphuis [1] formula and the numerical model (LITPACK) are 6.5%, 413.9%, 6.9%, 15.3% and 18.1%, respectively. The comparison of the results suggests that the ANFIS model is superior to the FIS model for predicting LST rates and performs significantly better than the tested empirical formulas and the numerical model.  相似文献   

8.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献   

9.
《Coastal Engineering》1999,36(1):59-85
Simple theoretical models to determine the equilibrium profile shape under breaking and non-breaking waves are presented. For the case of breaking waves, it is assumed that the seaward transport in the undertow is locally balanced by a net vertical sedimentation, so that no bottom changes occur at equilibrium. The parameterization of the water and sediment flux in the surf zone yields a power curve for the equilibrium profile with a power of 2/3, which is in agreement with previous field investigations on surf zone profile shapes. Three different models were developed to derive the profile shape under non-breaking waves, namely (1) a variational formulation where the wave energy dissipation in the bottom boundary layer is minimized over the part of the profile affected by non-breaking waves, (2) an integration of a small-scale sediment transport formula over a wave period where the slope conditions that yield zero net transport determine equilibrium, and (3) a conceptual formulation of mechanisms for onshore and offshore sediment transport where a balance between the mechanisms defines equilibrium conditions. All three models produced equilibrium profile shapes of power-type with the power typically in the range 0.15–0.30. Comparison with field data supported the results obtained indicating different powers for the equilibrium profile shape under breaking and non-breaking waves.  相似文献   

10.
波浪在珊瑚礁地形上破碎特性试验研究   总被引:2,自引:0,他引:2  
对波浪在珊瑚礁地形上的传播特性进行了物理试验研究,将珊瑚礁地形简化为坡度为1∶5的陡坡(向海坡)加较长水平礁坪段的地形,对规则波和不规则波在该地形条件下的波浪破碎及波高沿程衰减进行了研究。结果表明,波高较小时,波浪破碎发生在礁坪上,但随着入射波高的增大,破碎位置逐渐向来浪方向移动,直至在向海坡段破碎。对于在礁坪上破碎的波浪,相对水深db/L0一定的条件下,破碎波高与入射波陡H0/L0相关,且变化趋势受相对水深db/L0的影响。同时给出了该地形条件下波浪破碎指标以及礁坪段破碎后沿程波高的计算公式。  相似文献   

11.
通过波浪水槽实验,开展不同类型波浪作用下的沙质岸滩演化规律研究工作。本次实验研究不考虑比尺,采用1:10与1:20组成的复合沙质斜坡对岸滩进行概化,选取规则波和椭圆余弦波两种典型波浪作用,对波浪的传播、变形和破碎、上爬、回落过程以及波浪作用前后沙质岸滩床面地形进行了观测,探讨波浪作用下沙质岸滩剖面演化规律。本文实验工况中,规则波作用下,岸滩剖面呈现出沙坝剖面和滩肩剖面,椭圆余弦波作用下的岸滩剖面均呈滩肩形态,发现岸滩剖面形态不仅与波浪作用类型、强度、周期等因素相关,还与波浪破碎的强度等因素有关。通过对实验过程中现象的进行观察和分析,引入了卷破波水舌冲击角的概念。对波浪卷破破碎后形成的水流挟沙运动与岸滩剖面形态的关系进行定性分析,对水舌冲击角与Irribarren参数之间的关系进行定量分析,基于Irribarren参数与岸滩剖面形态的关系初步建立了波浪作用下沙质岸滩剖面形态判别关系式。通过本文实验结果和前人实验结果对趋势线进行拟合,求得其判别系数,判别式能够较好地划分淤积型岸滩、侵蚀型岸滩及过渡型岸滩三种岸滩形态。  相似文献   

12.
《Coastal Engineering》1999,38(3):143-166
Two different concepts are applicable to model the nearshore morphodynamics. The first one takes into account only final consequences of acting mechanisms and is aimed at the prediction of long-term trends in beach development. Another approach implies the modelling of the whole suite of elementary processes responsible for changes in nearshore bottom topography during a given storm, and it is the approach used in the present work. A coastal area model complex is proposed that allows to reproduce the local morphological changes due to both the natural processes and the influence of coastal structures, such as a groin, a detached breakwater and a navigable channel (underwater trough). Consisting of a traditional series of basic components, the model differs from other ones in essential aspects concerning the treatment of transport mechanisms. In particular, the determination of wave-induced near-bed mean flow is based on the hypothesis that the direction and magnitude of bottom drift depend on difference between the actual rate of energy dissipation and its threshold value marking the flow reversal point. This hypothesis is shown to explain a general trend of cross-shore mean flow distributions observed in the nearshore region. Besides, the influence of the wave breaking process on sediment suspension is taken into account and the contribution of the swash zone to total sediment transport is included. Examples of computed morphological response are represented to demonstrate the model capability. A satisfactory agreement of computations with available data is pointed out.  相似文献   

13.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

14.
淤泥质、粉沙质及沙质海岸航道回淤统一计算方法   总被引:1,自引:0,他引:1  
根据20世纪80年代初提出的淤泥质海岸航道回淤计算方法的基础上,开展了拓展研究,使之统一适用于淤泥质海岸、粉沙质海岸及沙质海岸。主要研究内容有,在波浪和潮流综合作用下挟沙力含沙量研究中引入了特定的泥沙因子F1/F,从而挟沙力含沙量公式不仅适用于淤泥质泥沙,也适用于非淤泥质泥沙;在动力因素方面,除了一般寻常潮和波浪动力外,进一步考虑了风暴潮和破波的巨大掀沙能力造成航道骤淤的可能性。并结合连云港30万吨级主航道扩建及徐圩港区10万吨级航道的回淤问题(包括骤淤可能性问题),京唐港外航道和黄骅港外航道的骤淤问题,进行预测计算及校验计算,结果都是良好的。此外,对杭州湾强潮和涌潮情况下的挟沙力含沙量也进行了校验计算,结果也非常满意。  相似文献   

15.
A new medium–long term beach evolution model is proposed. This model is based on an analytically integrated sediment conservation equation and on a beach profile evolution model. The sediment conservation equation provides the sediment supplies or losses. The beach profile evolution model redistributes the sediment supplies or losses along the beach profile. In the beach profile evolution model, the definition of the complete profile is incorporated (breaking zone, transition zone, exterior zone and geological zone). The proposed model has been applied to several theoretical cases and to field data, showing the advantages of this model compared to classical “one-line models”.  相似文献   

16.
在波面位移为正态过程的假定下,推导出一种以平均周期和风速为参量的白浪覆盖率公式W=1-Φ[5.11094[-T/U10]0.7576].依据摩擦风速和U10的表达式,进一步推导出白浪覆盖率依赖于摩擦风速的形式W=1-Φ[0.5227[-T/U]0.7576]].考虑到在实际应用中,经常需要用波龄描述波浪的状态,将白浪覆盖率表示成一种形式简单的波龄的函数W=1-Φ(3.6496ξ0.7576),与Monahan等的海上测量数据符合良好.  相似文献   

17.
Sediment incipient motion is a fundamental issue in sediment transport theory and engineering practice. Silt has transitional behavior between cohesive and non-cohesive sediment and its incipient motion is still poorly understood. This study aims to find an expression for incipient motion from silt to sand from a unified perspective and analysis. From the analysis of forces, using the derivation method for the Shields curve, an expression for sediment incipient motion is proposed for both silt and sand under conditions of combined waves and currents. The differences and similarities in the sediment motion threshold were analyzed under the effects of waves and currents, and fine and coarse sediment. The Shields number was revised by introducing the cohesive force and additional static water pressure, which indicates that this study could be seen as an extension of the Shields curve method for silt. A number of experimental datasets as well as field data were used to verify the formula. The effect of bulk density on fine sediment was discussed and tested using experimental data.  相似文献   

18.
北戴河海滩泥沙捕获实验及其初步结果分析   总被引:2,自引:1,他引:2  
介绍了利用泥沙捕获器观测破波带泥沙垂直分布结构的现场实验方法和基本程序,以及利用实验结果计算泥沙通量的方法。研究表明,近岸带泥沙运移通量及其在垂向上的分布受破波带相对位置和海滩地形变化的影响。在破波点附近,波浪的搅动和流场作用强,泥沙运移通量增大,泥沙在波浪的作用下可以大量进入垂直水体以悬移和跃移的方式运移。在本实验中,破波点附近的泥沙在距海底100cm的垂直水体中运移,通量垂向向上逐渐减小。远离破波点,泥沙运移通量和进入垂直水体的高度明显下降。在地形变化复杂的有坝海滩,沙坝顶部的泥沙运移通量最大,泥沙进入垂直水体运移的机率增加,而在沙坝问的沟槽内,波浪和海流作用减弱,泥沙通量和垂向进入水体运移的比例下降。  相似文献   

19.
通过大尺度水槽波浪引起泥沙悬移的动床模型实验,研究了沙坝海岸破波带内水底悬沙浓度形成机理,通过比较时间平均水底悬沙浓度与时间平均水底波浪水质点动能或时间平均水底湍动能之间的相关性,论证了利用时间平均湍动能比利用时间平均波浪水质点动能计算时间平均水底悬沙浓度更为适用,并提出了以上时间平均水底悬沙浓度与水底湍动能之间的关系也可以用来近似表达时间变化的水底悬沙浓度与时间变化的水底湍动能之间的关系。研究针对规则波、波群和不规则波3种波浪形态进行,并分别对破波带内的爬坡区、内破波区和沙坝区3个区域实验结果进行讨论。  相似文献   

20.
Prediction of threshold conditions and incipient motion is the essential issue for the study of sediment transport. This work compares existing empirical threshold curves proposed for Shields diagram, a method based on the concept of probability of sediment movement, and an empirical method based on movability number. These methods are used to predict the incipient motion conditions for experimental runs taken from various studies. Most of the experimental data, used in this work, have not been used before in derivation of alternative formulations for Shields diagram and other methods. The empirical threshold curves based on the Shields entrainment function was the least successful at predicting the measured incipient motion conditions, while the use of the movability number gives good predictions of critical shear velocity compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号