首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 137 internal solitary waves (ISWs) are captured during a field experiment conducted in the deep basin west of the Luzon Strait (LS) from March to August, 2010. Mooring observations reveal that a fully developed ISW owns a maximum westward velocity of more than 1.8 m/s and an amplitude of about 200 m. The ISWs in the South China Sea (SCS) are most active in July, which may be due to the strong stratification in summer. Most of the ISW episodes are detected around and after the 1st or 15th lunar day, indicating that the ISW in the SCS is triggered by astronomic tides. Half part of the observed ISWs were detected around 19:00 local time, which can be explained by the fact that type-a ISWs emerged in the evening at roughly the same time each day. The propagation direction of the ISWs and the astronomic tides in the LS show that the area south of the Batan Island is probably the main source region of the type-a ISWs, while the area south of Itbayat Island and south of the Batan Island is likely the main source region of the type-b ISWs observed at the mooring. Moreover, for the resonance of semidiurnal internal tides emitting from the double ridges in the LS, the underwater ridge south of the Itbayat Island and south of the Batan Island is believed to favor the generation of the energetic ISWs.  相似文献   

2.
A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation,propagation, vertical structure and energy conversion of M2 internal tides in the Luzon Strait(LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations,demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.  相似文献   

3.
吕宋海峡附近中尺度涡特征的统计分析   总被引:2,自引:0,他引:2  
采用1993年1月到2008年12月16a融合海面高度距平数据,追踪吕宋海峡附近海域(18°~23°N,116°~126°E)中尺度涡的移动轨迹,结果表明:时间分辨率为7d的卫星高度计资料难以观测到中尺度涡从西北太平洋通过吕宋海峡传进南海的过程,但对1994年吕宋海峡中部观测到的一个气旋涡及其附近中尺度涡的运动轨迹进行分析可见,西北太平洋海面高度变化会与吕宋海峡内部海面高度耦合后向南海传播。海面高度距平数据的时间-经度图表明,西北太平洋海面高度变化信号在西传至吕宋海峡附近(121°~122°E)时出现信号不连续。对21°N,116°~140°E断面的海面高度距平数据按周期分别为1~3月、3~6月、330~390d(年信号)进行分段带通滤波,发现不同周期的西北太平洋信号穿过吕宋海峡传入南海受到的阻隔作用、向西传播的速度以及它们所受的强迫机制均不同。  相似文献   

4.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

5.
吐噶喇海峡是西北太平洋重要的内潮产生区域,该区域内产生的内潮对于东海陆架和西北太平洋的混合和物质输运有十分重要的作用。水平分辨率为3km的JCOPE-T(JapanCoastalOcean PredictabilityExperiment—Tides)水动力学模式的结果表明,吐噶喇海峡的内潮主要产生在地形变化剧烈的海山和海岛附近,其引起的等密面起伏振幅可达30m。吐噶喇海峡的内潮在垂直于等深线方向分为两支向外传播:一支向西北方向传播,进入东海陆架后迅速减小;另一支向东南方向传播,进入西北太平洋。吐噶喇海峡潮能丰富,其在约半个月内的平均输入的净正压潮能通量为13.92GW,其中约有3.73GW转化为内潮能量。生成的内潮能量有77.2%在当地耗散,传出的内潮能通量为0.84GW,主要通过西北和东南两个边界传出。该区域潮能通量有显著的大小潮变化,大潮期间输入的正压潮净能通量和产生的内潮能通量均约为小潮期间的2倍,但其主要产生区域基本不变,且内潮能量耗散比率均在产生的内潮通量的76%—79%。另外,内潮能通量的传播方向也没有发生变化,仍主要通过西北和东南两个边界传出。因此,大小潮的变化仅影响吐噶喇海峡处产生的内潮能量的大小,不影响其产生区域、传播方向和耗散比率。  相似文献   

6.
文章采用三维海洋模式MITgcm, 对印度尼西亚海(简称印尼海)内潮的生成和传播过程进行了研究。研究结果表明: 1)苏拉威西海和西北太平洋地区的内潮呈现明显的全日潮信号; 望加锡海峡、翁拜海峡、东北印度洋、帝汶海等站位的内潮呈现明显的半日潮信号; 2)印尼海区内潮的标准化振幅在苏拉威西海、望加锡海峡、翁拜海峡、马鲁古海、班达海、东北印度洋和西北太平洋地区均在温跃层附近达到最大, 约为20~40m; 在帝汶海地区在水深200m附近达到最大, 约为25~30m; 3)桑岭、斯兰海、翁拜海峡和帝汶海是主要的内潮生成区域, 内潮能通量达40kW·m-1; 4)苏禄海的内潮能量主要来自于局地正压潮的转化, 苏拉威西海和班达海的内潮能量则主要来自外部的传入。  相似文献   

7.
通过对TOGA-COARE期间的一组锚系仪器阵列资料的分析得出:在赤道西太平洋1°45′S,156°E.海域存在显著的半日潮频内波,它的水平波数(波长)、垂向波数、水平传播速度和垂向传播速度分别约为:3.3×10-2 km-1 (210 km),-1.6×10-3 m-1,2.0 m/s,-3.8 cm/s.波形向斜下方传播,亦即波能向斜上方传输.它在观测点西南方生成后,向东北方向传播,到达观测海区.流速矢量旋转谱水平随深度的变化呈马鞍形,低谷及深处的峰所在深度分别与南赤道流及赤道潜流的南边界所在深度大体一致.旋转椭圆主轴方位角随深度变化,在浅层(40 m处)为北偏东30°,到深处(324 m)转为东偏南14°.总体上呈东北方向,表明波来自西南方向.  相似文献   

8.
应用美国联合预警中心(Joint Typhoon Warning Center,JTWC)的台风最佳路径资料、美国国家海洋大气局(National Oceanic and Atmospheric Administration,NOAA)的扩展海表面温度资料以及美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)和美国国家大气科学研究中心(National Center for Atmospheric Research,NCAR)的大气环流场资料,研究了20世纪90年代西太平洋暖池(简称暖池)年代际扩张对西北太平洋台风和登陆中国沿岸台风的影响。研究发现,相比于暖池扩张前期(1965—1992),后期(1993—2013)台风生成在西北太平洋中部区域(10°—20°N,135°—145°E)显著减弱,在10°—20°N,145°—160°E区域和南海北部区域则表现出增多的特点。台风移动路径变异特征呈现为移动进入南海和登陆中国东部沿岸的西行和西北行路径减少,登陆日本的转向型路径增多,同时登陆我国海南岛和东南部沿岸的台风增多。进一步探查这种影响的可能原因发现,与暖池扩张密切相关的太平洋年代际变化引起的纬向环流的变异是西北太平洋中部台风生成减少的主要原因;而南海北部台风生成增多则归因于南海区域局地环流特征的变异。同时,南海北部台风生成增多是登陆我国海南岛和东南沿岸台风增多的主要决定因素。  相似文献   

9.
Theoretically, propagating internal tides in the ocean may reflect at turning depths, where buoyancy frequencies equal tidal frequencies, before colliding with the air-sea interface or rugged bottom topography. Globally, the internal tide lower turning depths(ITLTDs) in the open ocean have been mapped; however, knowledge of the presence of ITLTDs in the South China Sea(SCS) is lacking. In this study, 2 125 high-quality temperature-salinity profiles(including 58 deep-sea hydrographic measurements...  相似文献   

10.
Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propagating northwest on the continental shelf of the northwestern South China Sea (SCS). Corresponding to different stratification of the water column and tidal condition, both elevation and depression ISWs were observed at the same mooring location with amplitude of 35 m and 25 m respectively in different days. Regular arrival of the remarkable ISW packets at approximately the diurnal tidal period and the dominance of diurnal internal waves in the study area, strongly suggest that the main energy source of the waves is the diurnal tide. Notice that the wave packets were all riding on the troughs and shoulders of the internal tides, they were probably generated locally from the shelf break by the evolution of the internal tides due to nonlinear and dispersive effects.  相似文献   

11.
本文利用南海东北部的潜标资料研究了南海东北部全日非相干内潮的特征。潜标数据的结果表明,在2010年7月下旬和8月上旬,全日非相干内潮的能量显著增强,同时全日内潮的总能量强度达到了预期(相干部分)的两倍;从能量的垂向分布上来看,非相干内潮的能量最大值出现在120 m深度附近。射线追踪模型的结果表明,此次强非相干内潮能量主要来自吕宋海峡的中部,黑潮入侵是导致非相干内潮信号增强的主要原因,全日内潮在吕宋海峡中部生成后向西传播进入南海,而黑潮改变了全日内潮的传播路径,将西向传播的内潮向北折射,导致来自多源地的内潮在潜标处叠加,引起全日非相干内潮能量的增强。本文的结果将有助于加深对非相干内潮的特征的认识和促进对其生成机制的了解。  相似文献   

12.
On the basis of hydrographic data obtained from 28 November to 27 December, 1998, the three-dimensional structure of circulation in the South China Sea (SCS) is computed using a three-dimensional diagnostic model. The combination of sea surface height anomaly from altimeter data and numerical results provides a consistent circulation pattern for the SCS, and main circulation features can be summarized as follows: in the northern SCS there are a cold and cyclonic circulation C1 with two cores C1-1 and C1-2 northwest of Luzon and an anticyclonic eddy (W1) near Dongsha Islands. In the central SCS there is a stronger cyclonic circulation C2 with two cores C2-1 and C2-2 east of Vietnam and a weaker anticyclonic eddy W2 northwest of Palawan Island. A stronger coastal southward jet presents west of the eddy C2 and turns to the southeast in the region southwest of eddy C2-2, and it then turns to flow eastward in the region south of eddy C2-2. In the southern SCS there are a weak cyclonic eddy C3 northwest of Borneo and an anti-cyclonic circulation W3 in the subsurface layer. The net westward volume transport through section CD at 119.125°E from 18.975° to 21.725°N is about 10.3 × 106 m3s−1 in the layer above 400 m level. The most important dynamic mechanism generating the circulation in the SCS is a joint effect of the baroclinicity and relief (JEBAR), and the second dynamical mechanism is an interaction between the wind stress and relief (IBWSR). The strong upwelling occurs off northwest Luzon.  相似文献   

13.
Current measurements in the surface layer in Sagami and Suruga Bays showed existence of significant tidal currents which are considered to be mainly due to internal tides (Inaba, 1982; Ohwaki,ea al., 1991). In addition, the prevailing period of the tidal currents is semidiurnal in Sagami Bay, but diurnal in Suruga Bay. To explain this difference in the prevailing, periods, numerical experiments were carried out using a two layer model. The internal tides are generated on the Izu Ridge outside the two bays. The semidiurnal internal tide propagates into Sagami Bay having characteristics of an internal inertia-gravity wave, while it propagates into Suruga Bay having characteristics of either an internal inertia-gravity wave or an internal Kelvin wave. The diurnal internal tide behaves only as an internal Kelvin wave, because the diurnal period is longer than the inertia period. Thus, the diurnal internal tide generated on the Izu Ridge can be propagated into Suruga Bay, while it cannot propagate into the inner region of Sagami Bay, though it is trapped around Oshima Island, which is located at the mouth of Sagami Bay. The difference in the propagation characteristics between the semidiurnal and diurnal internal tides can give a mechanism to explain the difference in the prevailing periods of the internal tides between Sagami and Suruga Bays.  相似文献   

14.
利用高度计海面高度异常数据和非线性1½层约化重力模式研究了南海东部中尺度涡的生成机制。模式结果表明,南海内区风场是南海东部中尺度涡生成的主要驱动力,且南海内区高频风场能解释约54%的南海东部中尺度涡。从西太平洋传来的信号同样有十分重要的作用,由西太区域高频风场大致能解释南海东部40%的中尺度涡。风驱动的赤道附近的海面异常信号能经过锡布图通道和民都洛海峡传播到吕宋岛西海岸,其中有部分能量会以罗斯贝波的形式往西传播。这种信号在西传的过程中会发生不稳定,可能形成孤立的涡旋。  相似文献   

15.
The evolution of energy, energy flux and modal structure of the internal tides(ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m~2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs.From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.  相似文献   

16.
Based on the moored current and temperature observations during the summer of 2005, the vertical structure of the internal tides on the continental shelf of the northwestern South China Sea (SCS) is studied. The vertical structure of the internal tides was found to differ greatly between semidiurnal and diurnal constituents. Generally, the diurnal constituents are dominated by the first-mode motions, which are consistent with the overwhelming first-mode signals in the northeastern SCS. In contrast, the semidiurnal internal tides, unlike the predomination of the first-mode variations in the northeastern area, exhibit a higher modal structure with dominate second-mode signals in the observational region. Moreover, although the diurnal internal tides are much stronger than the semidiurnal component, the shear caused by the latter over various scales was found to be significant compared to that induced by the diurnal tides, probably due to the superposition of the first-mode and higher-mode (smaller scale) semidiurnal variations. Further analysis demonstrates that the shear induced by the diurnal internal tides is larger than that induced by the semidiurnal variations around 45 m depth, where the first-mode current reversal in the vertical happens, while below 45 m depth higher-mode semidiurnal internal tides generally produce larger shear than that by the diurnal component. The northwest-propagating semidiurnal internal tides of higher-mode with small vertical scale, probably do not originate from a distant source like Luzon Strait, but were likely generated near the experiment site.  相似文献   

17.
1998年冬季南海环流的三维结构   总被引:10,自引:3,他引:7  
利用1998年11月28日至12月27日南海的调查资料,采用三维海流诊断模式,计算了冬季南海三维海流,所得结果如下:(1)冬季南海环流系统方面:1)南海北部,在吕宋西北海域分别存在一个气旋式、反气旋式涡.2)南海中部,在越南近岸存在较强的、南向的西边界射流.其以东海域出现较强的气旋式环流.南海中部东侧海域存在一个较弱的反气旋式环流.3)南海南部,一般流速较弱.在112°E以西受反气旋式环流所控制,加里曼丹岛西北海域存在气旋性环流.由于受调查海域所限,这两个环流只部分出现.(2)上述环流系统与200 m层水平温度、密度分布对应较好.(3)南海冬季环流垂向速度分布方面:1)表层,南海北部,在吕宋西北为范围较大的上升流海区.而在东沙群岛附近海域出现了下降流.海南岛以南及东南海域也存在下降流.南海中部,越南以东海域出现范围较大的下降流,其以东为上升流海域,而在巴拉望岛西北海域又出现下降流.南海南部,基本上被上升流海域所控制.2)次表层与表层不同,例如在次表层,海南岛东南部海域出现上升流.中层和深层垂向速度分布与次表层相似.(4)关于南海垂向速度分量分布的动力原因:在表层,风应力旋度场起着主要作用;在次表层,β效应与斜压场相互作用是重要的动力因子,而风应力旋度场和β效应与正压场相互作用也有一定影响;在南海中部等区域的中层以及在南海的深层,主要受B效应与斜压场相互作用和B效应与正压场相互作用的共同作用.  相似文献   

18.
Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the internal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some propagate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekong River.  相似文献   

19.
To detect eddies, intensive surveys of the northeast South China Sea (SCS) (114°30′–121°30′ E, 17°–22°N) were conducted in July 1998 during the international SCS Monsoon Experiment (SCSMEX), the U.S. Navy using Airborne Expendable Bathythermograph and Conductivity-Temperature-Depth sensors (AXBT/AXCTD), and the Chinese Academy of Sciences using Acoustic Doppler Current Profilers (ADCP). The hydrographic survey included 307 AXBT and 9 AXCTD stations, distributed uniformly throughout the survey area. The ADCP survey had two sections. The velocity field inverted from the AXBT/AXCTD data and analyzed from the ADCP data confirm the existence of a low salinity, cool-core cyclonic eddy located northwest of Luzon Island (i.e., the Northwest Luzon Eddy). The radius of this eddy is approximately 150 km. The horizontal temperature gradient of the eddy increases with depth from the surface to 100 m and then decreases with depth below 100 m. The cool core was evident from the surface to 300 m depth, being 1°–2°C cooler inside the eddy than outside. The tangential velocity of the eddy is around 30–40 cm/s above 50 m and decreases with depth. At 300 m depth, it becomes less than 5 cm/s. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Both microscale and finescale measurements were conducted along 20°N and 21°N in the northern South China Sea (SCS) during July 2007. Spatial variability of turbulent kinetic energy (TKE) dissipation rate was examined, and two finescale parameterizations were assessed and compared. TKE dissipation rates along the 21°N section were found to be much higher than those along 20°N; in particular, remarkably high TKE dissipation rates existed near the Luzon Strait and around the Dongsha Plateau, which were likely caused by internal tides and internal solitary waves, respectively. The Gregg–Henyey scaling does not work well in the northern SCS, while the MacKinnon–Gregg scaling with a modified parameter matches the observations in both magnitude and variability. One explanation is that the large-scale/low-mode shear mainly comes from low-frequency internal waves such as internal tides, which are not described well by the Garrett–Munk spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号