首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the full water-wave equation, a second-order analytic solution for nonlinear interaction of short edge waves on a constant plane sloping bottom is presented in this paper. For special case of slope angle b=p/2, this solution can be reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline. Interactions between two edge waves including progressive, standing and partially reflected standing waves were also discussed. The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves were also discussed. The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated, and the corresponding theoretical autocorrelation and spectral density functions of the first and second orders are derived. The boundary conditions for the determining determination of the parameters of short edge wave are suggested, that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory. Finally some computation results are demonstrated.  相似文献   

2.
Based on the full water-wave equation,a second-order analytic solution for nonlinear interaction of short edge waves on a plane sloping bottom is presented in this paper.For special case of slope angle β=π/2,this solution can reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline.Interactions between two edge waves including progressive,standing and partially reflected standing waves are also discussed.The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves are also given.The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated,and the corresponding theoretical autocorrelation and spectral density functions of the first and the second orders are derived.The boundary conditions for the determination of the parameters of short edge wave are suggested,that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory.Finally some computation results are demonstrated.  相似文献   

3.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

4.
遥感技术在河口颗粒态总磷分布及扩散研究中的应用初探   总被引:4,自引:0,他引:4  
以美国SeaStar卫星装载的SeaWiFS海洋水色遥感传感器作为遥感数据源,实测了光谱、海表温度、悬浮物含量、透明度、叶绿素浓度、颗粒态总磷含量等,建立了传感器悬浮物含量和颗粒态总磷含量的遥感信息提取模式,结果表明:(1)利用遥感技术估算的海水悬浮物的平均相对偏差为18.1%;(2)悬浮物在遥感图象上的分布和扩散趋势与实际吻合,并且在一定程度上反映了区域内海流运移路径;(3)颗粒态总磷含量在长江河口和杭州湾附近海域较高,由近岸向远岸迅速降低,与实际分布相符;(4)模型主要适用于河口等悬浮物含量高的Ⅱ类水休,对于以浮游植物为主的Ⅰ类水体应另外建立模式.  相似文献   

5.
6.
顾倩  张宁川 《海洋学报》2017,39(5):123-137
基于物理模型试验,考虑畸形波参数、相对板宽、相对波高等影响因素,就畸形波对平顶双层水平板防波堤作用进行研究。首先对畸形波作用下双层水平板的波浪力分布特征进行了讨论,然后就最大波动压强、结构最大总垂向力与不规则波作用进行了对比分析。结果表明,畸形波作用下,双层水平板最大波动压力出现在前端迎浪区域附近,向尾端逐渐递减。双层水平板4个受力面的压力分布不同且有相位差,4个受力面的最大波动压力时间差约在0.1Tp~0.4Tp范围内变化。与不规则波作用比较,畸形波作用没有显著改变波压包络分布特征,但增大了波压包络强度值。试验范围内,就最大总力而言,两者最大总浮托力比值在1.06~2.45间变化;向下的最大总垂向力比值在1.22~2.07之间变化;就波动压力而言,其增大的幅度与畸形波参数α1相关性最强,随α1的增大而增大,在α1=2.04~3.1试验范围内,畸形波作用时的最大压强比不规则波作用时可约增大20%~80%。就最大波吸力而言,两者的比值与畸形波参数α4相关性最强,随α4的增大而减小。在α4=0.62~0.75试验范围内,最大波吸力强度的比值在1.61~0.87范围内变化。当α4≤0.72时,畸形波作用时的最大波吸力大于不规则波作用时的最大波吸力;当α4 > 0.72时则刚好相反。  相似文献   

7.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

8.
非线性波浪时域计算的三维耦合模型   总被引:3,自引:1,他引:2  
将计算区域Ω划分为内域Ω1和外域Ω22=Ω-Ω1),外域控制方程采用改进线性频散特性的二维Boussinesq方程,用预报一校正法数值求解;结构物附近的内域控制方程为三维Navier-Stokes方程,由VOF方法数值求解。通过在外域和内域相匹配的交界面上设置合适的速度和波面边界条件,建立了三维非线性波浪时域计算的耦合模型。模拟试验表明:(1)耦合模型数值波浪水池可以产生稳定的、重复性较好的波动过程;(2)用耦合模型数值波浪水池求解较大浅水区域上的非线性波浪数值计算问题可以取得较高的计算效率,同时又能得出结构物附近的复杂流场。  相似文献   

9.
Kinematics of extreme waves in deep water   总被引:2,自引:0,他引:2  
The velocity profiles under crest of a total of 62 different steep wave events in deep water are measured in laboratory using particle image velocimetry. The waves take place in the leading unsteady part of a wave train, focusing wave fields and random wave series. Complementary fully nonlinear theoretical/numerical wave computations are performed. The experimental velocities have been put on a nondimensional form in the following way: from the wave record (at a fixed point) the (local) trough-to-trough period, TTT and the maximal elevation above mean water level, ηm of an individual steep wave event are identified. The local wavenumber, k and an estimate of the wave slope, ε are evaluated from ω2/(gk)=1+ε2, where ω=2π/TTT and g denotes the acceleration of gravity. A reference fluid velocity, is then defined. Deep water waves with a fluid velocity up to 75% of the estimated wave speed are measured. The corresponding kηm is 0.62. A strong collapse of the nondimensional experimental velocity profiles is found. This is also true with the fully nonlinear computations of transient waves. There is excellent agreement between the present measurements and previously published Laser Doppler Anemometry data. A surprising result, obtained by comparison, is that the nondimensional experimental velocities fit with the exponential profile, i.e. eky, y the vertical coordinate, with y=0 in the mean water level.  相似文献   

10.
Prorocentrum donghaiense is one of the most common red tide causative dinoflagellates in the Changjiang (Yangtze) River Estuary and the adjacent area of the East China Sea. It causes large-scale blooms in late spring and early summer that lead to widespread ecologic and economic damage. A means for distinguish- ing dinoflagellate blooms from diatom (Skeletonema costatum) blooms is desired. On the basis of measure- ments of remote sensing refectance [Rrs(λ)] and inherent optical parameters, the potential of using a mul- tispectral approach is assessed for discriminating the algal blooms due to P. donghaiense from those due to S. costatum. The behavior of two reflectance ratios [R1 = Rrs(560)/Rrs(532) and Re = Rrs(708)/Rrs(665)], suggests that differentiation of P. donghaiense blooms from diatom bloom types is possible from the current band setup of ocean color sensors. It is found that there are two reflectance ratio regimes that indicate a bloom is dominated by P. donghaiense; (1) R1 〉 1.55 and R2 〈 1.0 or (2) R1 〉 1.75 and R2 ≥ 1.0. Various sensitivity analyses are conducted to investigate the effects of the variation in varying levels of chlorophyll concentration and colored dissolved organic matter (CDOM) as well as changes in the backscattering ratio (bbp/bp) on the efficacy of this muitispectral approach. Results indicate that the intensity and inherent op- tical properties of the algal species explain much of the behavior of the two ratios. Although backscattering influences the amplitude of Rrs(λ), especially in the 530 and 560 nm bands, the discrimination between P. donghaiense and diatoms is not significantly affected by the variation of bbp/bp. Since aCDOM (440) in coastal areas of the ECS is typically lower than 1.0 m-1 in most situations, the presence of CDOM does not interfere with this discrimination, even as SCDOM varies from 0.01 to 0.026 nm-1. Despite all of these effects, the dis- crimination of P. donghaiense blooms from diatom blooms based on multispectral measurements of Rrs(λ) is feasible.  相似文献   

11.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

12.
An approach is developed to simulate wave–wave interactions using nonlinear elliptic mild-slope equation in domains where wave reflection, refraction, diffraction and breaking effects must also be considered. This involves the construction of an efficient solution procedure including effective boundary treatment, modification of the nonlinear equation to resolve convergence issues, and validation of the overall approach. For solving the second-order boundary-value problem, the Alternating Direction Implicit (ADI) scheme is employed, and the use of approximate boundary conditions is supplemented, for improved accuracy, with internal wave generation method and dissipative sponge layers. The performance of the nonlinear model is investigated for a range of practical wave conditions involving reflection, diffraction and shoaling in the presence of nonlinear wave–wave interactions. In addition, the transformation of a wave spectrum due to nonlinear shoaling and breaking, and nonlinear resonance inside a rectangular harbor are simulated. Numerical calculations are compared with the results from other relevant nonlinear models and experimental data available in literature. Results show that the approach developed here performs reasonably well, and has thus improved the applicability of this class of wave transformation models.  相似文献   

13.
Two-dimensional non-linear hydrodynamical equations are solved by using perturbation method and treating slopping beaches as bottom boundary conditions so that a kind of solution for nonlinear progressing waves is obtained. The first order of approximation is the same potential function as used by Biesel, and the second order is calculated numerically. Based on the solution, wave characteristics before breaking, especially the wave set-down, are discussed. It turns out that for the whole course of waves propagating from deep to shallow waters the theory proposed in this paper has a wider valid range of application than others.  相似文献   

14.
基于物理模型试验,探究畸形波和不规则波作用下浮体系泊张力差异问题。讨论相对波高、相对周期和畸形波参数α1对系泊张力的影响。结果显示:畸形波参数α1和浮体系泊张力显著相关。在α1=2.0~2.83范围内,畸形波作用下迎浪侧系泊张力最大值可达不规则波作用的1.9倍。在相对波高Hs/d=0.032~0.097范围内,畸形波作用下迎浪侧系泊张力最大值显著大于不规则波的作用结果,但畸形波和不规则波对应的1/3值及平均值几乎一致。就相对周期影响而言,迎浪侧系泊张力最大差别出现在谱峰周期Tp0p范围内。频域方面采用小波分析方法讨论畸形波和不规则波作用下浮体系泊张力时频谱特征,两种波浪作用下系泊张力时频特征有显著差别。  相似文献   

15.
应用基于势流理论的时域高阶边界元方法,建立一个完全非线性的三维数值波浪水槽,通过实时模拟推板造波运动的方式产生波浪。通过混合欧拉-拉格朗日方法和四阶Runge-Kutta方法更新自由水面和造波板的瞬时位置。利用所建模型分别模拟了有限水深波和浅水波,与试验结果、相关文献结果和浅水理论结果吻合较好,且波浪能够稳定传播。系统地讨论造波板的运动圆频率、振幅和水深等对波浪传播和波浪特性的影响,并对波浪的非线性特性进行分析,研究发现造波板运动频率、运动振幅以及水深均将对波浪形态和波浪非线性产生显著影响。结果为真实水槽造波机的运动控制以及波浪生成试验提供了依据,便于实验室设置更合理的参数来准确模拟不同条件下的波浪。  相似文献   

16.
In this paper, the method for determining the direction and velocity of internal tide wave is proposed. The main points are as follows: (1) starting with the continuity equation of incompressible fluid and taking the isotherm whose balance position is situated in the middle of the thermocline as the interface of two-layer ocean, one can get an equation of variations of average total current in the lower and upper layers; (2) WTide (Z) in the above-mentioned equation is expressed in first-order approximation; (3) the internal tide waves are treated as wave packets. Thus, one finds out a statistical relation, AΔu BΔv =ζ, which correlates the average shear effect caused by the internal tide wave with the isothermal fluctuation. The direction and velocity of the wave can be drawn from the formulae: (((1=Arctg (A/B), C1=1/(H0(A2 B2)~1/2).The calculated results agree, in the main, fairly well with two sets of observations at station L3.  相似文献   

17.
18.
余广明 《海洋学报》1981,3(2):330-347
波浪绕射现象是确定港域掩护状况的主要因素,在设计港口防波堤工程时必须予以考虑,以便根据港口使用要求,选择最佳的外堤布置方案,确保船舶作业安全并节省工程投资。防波堤工程可有各种不同布局,其中最常见的一种为单突堤。其它如岛堤、双突堤,从计算堤内水域波况的观点着眼,在一定条件下其性质亦属于单突堤一类。因此,研究单突堤后的波浪绕射规律具有较普遍的实际意义。  相似文献   

19.
The hydrodynamic behaviour of an oscillating wave surge converter (OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is analysed. The mathematical model used is based on the velocity potential theory together with the fully nonlinear boundary conditions on the moving body surface and deforming free surface. The problem is solved by the boundary element method. Numerical results are obtained to show how to adjust the mechanical properties of the OWSC to achieve the best efficiency in a given wave, together with the nonlinear effect of the wave height. Numerical results are also provided to show the behaviour of a given OWSC in waves of different frequencies and different heights.  相似文献   

20.
Zhang  Hao-chen  Liu  Shu-xue  Li  Jin-xuan  Wang  Lei 《中国海洋工程》2019,33(2):160-171
With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号