首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
珠江口伶仃洋海底沉积   总被引:2,自引:0,他引:2  
在前人工作的基础上,利用2003—2005年广州海洋地质调查局1∶10万《珠江三角洲近岸海洋地质环境与地质灾害调查》项目的实测资料,综合分析了伶仃洋海底的沉积特征,认为伶仃洋表层沉积物类型有:砂、黏土质砂、砂-粉砂-黏土、砂质黏土、黏土质粉砂、粉砂质黏土等6种类型。伶仃洋晚更新世以来的海底地层主要有两套:层A为全新世冰后期海侵以来逐渐堆积而成的沉积物,钻孔揭示的沉积物类型主要为黏土质砂和砂—粉砂—粉砂质黏土;层B为一套晚更新世的黏土质粉砂、细砂—粗砂(含砾)、粉砂质黏土—黏土,以陆相沉积和剥蚀为主,局部为海陆交互相沉积,其下地层则为基岩风化物和基岩。  相似文献   

2.
Soils are classified as sandy soils and clayey soils in most soil classification systems, and appropriate equations are used for practical design, depending on soil type, to represent each soil behavior. Sand-clay mixtures, however, need a special standard to evaluate their specific behaviors since they are categorized as intermediate soils or transitional soils and typically show intermediate properties. In this article, a series of cyclic triaxial tests were conducted on specific sand-fines mixtures with three fine types and various fine contents. The behaviors of various soil mixtures (silica sand with Iwakuni natural clay, Tottori silt, and Kaolin clay) were investigated by considering a concept of granular void ratio expressed in terms of sand structure. The cyclic shear strengths of the soil mixtures were also evaluated by increasing the fine content but no more than the threshold fine content. In the results, the cyclic deviator stress ratio decreased in dense soils whereas it increased in loose soils by increasing the fine content. In addition, a simple equation was proposed to predict the liquefaction resistance of sandy soils by evaluating the cyclic deviator stress ratio with a concept of equivalent granular void ratio.  相似文献   

3.
波浪作用下粉质土海床的液化是影响海上平台、海底管线等海洋构筑物安全的灾害之一。在进行构筑物设计中应考虑海床液化的深度问题,而液化土体对下部海床的界面波压力是计算海床孔隙水压力增长以及液化深度的重要参量。本文基于波致粉土海床自上而下的渐进液化模式,利用双层流体波动理论,推导了考虑海床土体黏性的海床界面波压力表达式,并与不考虑黏性时的界面波压力进行了比较分析。结果表明,计算液化后土体界面波压力时,是否考虑液化土体的黏性对结果影响较大,进而可能影响粉质土海床液化深度的确定。  相似文献   

4.
海洋碎屑沉积物的分类   总被引:6,自引:0,他引:6  
比较研究了以Shepard和Folk等为的海洋碎屑沉积物分类方案,提出沉积物的分类应兼具描述与解释两种功能。Shepard分类已经过时,Folk等的分类方案有显著的优点,但亦有不足之处,应予以改进。沉积物的成分分类受到忽视的现象应予以改变。为适应我国海洋地质测量的需要,作者提出了一套结构分类与成分分类相匹配的多重分类系统,解决了海洋碎屑沉积物分类中的矛盾和问题。  相似文献   

5.
One of the important design considerations for marine structures situated on sand deposits is the potential for instability caused by the development of excess pore pressure as a result of wave loading. A build-up of excess pore pressure may lead to initial liquefaction. The current practice of liquefaction analysis in marine deposits neglects the effects of structures over seabed deposits. However, analyses both in terrestrial and marine deposits have shown that the presence of a structure, depending on the nature of the structure and initial soil conditions, may decrease or increase the liquefaction potential of underlying deposits. In the present study, a wave-induced liquefaction analysis is carried out using mechanisms similar to earthquake-induced liquefaction. The liquefaction potential is first evaluated using wave-induced liquefaction analysis methods for a free field. Then by applying a structure force on the underlying sand deposits, the effect of the structure on the liquefaction potential is evaluated. Results showed that depending on the initial density of the sand deposits and different structures, water depths and wave characteristics, the presence of a structure may increase or decrease the liquefaction potential of the underlying sand deposits.  相似文献   

6.
Offshore geotechnical surveys form part of an integrated investigation to rejuvenate a decrepit minor port at Badagara, Kerala on the southwestern coast of India. The sediments typify a fluvio-marine milieu ranging from silty clay, sand, silty sand, sandy silt and clayey silt. Geotechnical and sedimentological studies of shallow cores reveal the geotechnical aspects besides the depositional history of the sediments. Downcore geotechnical variations and regressive coefficients based on their inter-relationships highlight diverse factorial inferences. X-Ray Diffraction data indicate the prominent clay type.

A comparative evaluation of the geotechnical characteristics of clayey sediments off Badagara, with similar studies along various sectors of the Kerala coast, both on land as well as in the near shore, is broadly attempted. Geotechnical studies carried out earlier on the uplifted Cochin marine clays provide comparative data for evaluating the possible variations between present day marine clayey sediments occurring along the Kerala coast and uplifted marine clays which, besides their gross variations in levels with respect to the present sea-level, also obviously relate to a much older depositional environment and provenance during probable Holocene times.  相似文献   

7.
The soil permeability of many natural marine sediments decreases with depth because of consolidation under overburden pressure. This is accompanied by a decrease in porosity and void ratio that also affect the permeability. Conventional theories for wave-induced soil response have assumed a homogeneous porous seabed. This paper presents a new approach for the wave-induced response in a soil matrix, with variable permeability as a function of burial depth. The soil matrix considered is unsaturated and anisotropic, and is subject to a three-dimensional wave system. The pore pressure and effective stresses induced by such a system are obtained from a set of equations incorporating a variable permeability. Verification is available through reduction to the simple case of uniform permeability. The results indicate that the effect of variable soil permeability on pore pressure and vertical effective stress may be significant, especially in a gravelled seabed and for unsaturated sandy soils.  相似文献   

8.
浙江北部岛屿海域土体稳定性研究   总被引:7,自引:1,他引:7  
本文探讨了浙江北部岛屿区水道岸坡土体滑动的成因机制与滑坡的形态特征,对在波浪与重力共同作用下的边坡稳定性以及波浪底压引起的砂土液化进行了定量分析。研究表明,岛屿区水道中部与岸坡间强烈的冲淤反差,是该海域岸坡土体滑动不稳定因素积累的主要环境条件。目前发现的多数为中到大型的牵引式滑坡,主要由重力作用所致。对于波浪较大、水深较浅海域的粉砂、细砂分布区,浅表砂层存在着发生液化的可能性。  相似文献   

9.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

10.
Response of a porous seabed around breakwater heads   总被引:1,自引:0,他引:1  
J. Li  D.-S. Jeng   《Ocean Engineering》2008,35(8-9):864-886
The evaluation of wave-induced pore pressures and effective stresses in a porous seabed near a breakwater head is important for coastal engineers involved in the design of marine structures. Most previous studies have been limited to two-dimensional (2D) or three-dimensional (3D) cases in front of a breakwater. In this study, we focus on the problem near breakwater heads that consists of incident, reflected and diffracted waves. Both wave-induced oscillatory and residual liquefactions will be considered in our new models. The mistake in the previous work [Jeng, D.-S., 1996. Wave-induced liquefaction potential at the tip of a breakwater. Applied Ocean Research 18(5), 229–241] for oscillatory mechanism is corrected, while a new 3D boundary value problem describing residual mechanism is established. A parametric study is conducted to investigate the influences of several wave and soil parameters on wave-induced oscillatory and residual liquefactions around breakwater heads.  相似文献   

11.
波浪引起的海床不稳定性是海洋工程中需要考虑的重要问题。在对现有波致海床滑动稳定性计算方法进行分析的基础上,提出了一种波致海床滑动稳定性计算的全应力状态法,将其与现有计算方法进行了对比分析,并进一步研究了波致砂土海床和软土海床的滑动失稳特征。结果分析表明,全应力状态法在波致海床滑动稳定性分析中具有较好的适用性。对于砂土海床,其滑动稳定性受饱和度的影响较大,且当海床计算厚度约为0.2倍波长时对应的滑动深度最大。波浪作用下坡度不超过2°的均质软土海床,其最危险滑动面的位置仅与波长有关,其滑动深度约为0.21倍波长,滑动面半弦长约为0.33倍波长;海床表面的波压力数值只影响其安全系数的大小,而不影响其滑动深度。  相似文献   

12.
根据“灾害地质环境调查与评价”项目1995年11月、1996年6月和1998年10月的航次调查及随后的沉积物样品的试验室分析资料,从物理性质和力学特征各方面对东海油气资源区海底沉积物进行了综合工程地质特征研究。发现本区沉积物结构、剪切特征、含水量和液塑限随深度的变化而变化;本区海底沉积物类型既分布有中砂、细砂和粉砂3种砂性土,也分布有淤泥、淤泥质粘土和粘质粉土3种粘性土,沉积物的物理力学性质与相应的土类变化相一致。  相似文献   

13.
Experimental investigations are carried out on wave-induced pressures and uplift forces on a submarine pipeline (exposed, half buried and fully buried) in clayey soil of different consistency index both in regular and random waves. A study on scour under the pipeline resting on the clay bed is also carried out. It is found that the uplift force can be reduced by about 70%, if the pipeline is just buried in clay soil. The equilibrium scour depth below the pipeline is estimated as 42% of the pipe diameter for consistency index of 0.17 and is 34% of the pipe diameter for consistency index of 0.23. The results of the present investigations are compared with the results on sandy soil by Cheng and Liu (Appl. Ocean Res., 8(1986) 22) to acknowledge the benefit of cohesive soil in reducing the high pore pressure on buried pipeline compared to cohesionless soil.  相似文献   

14.
潮流场对渤、黄、东海陆架底质分布的控制作用   总被引:10,自引:0,他引:10  
运用二维潮流数学模型,模拟了渤、黄、东海陆架的M2潮汐、潮流。结果表明,渤、黄、东海陆架的潮流有强弱之分以及往复流和旋转汉之别。在此基础上,计算了8种粒径沙的湖平均悬移输沙率、潮平均推移输沙以及相应的输沙率散度。根据输沙率散度的正负,划分了海底冲刷区与淤积区。根据不同粒径泥沙输沙率散度的相对大小,确定出海底的主要底质类型为砂质沉积、粉砂质泥沉积和以粉砂为主的混合沉积。计算结果表明,海底3种主要底负类型的分布格局与海底的冲淤格局以及与输沙率矢量的发散和聚合状况基本一致。在渤、黄、东海陆架,沙脊主要在强往复流区形成,沙席主要在强或较强的旋转流区形成,泥质沉积主要在弱潮流区形成。砂质沉积、泥质沉积以及混合沉积这3种主要底质类型并非孤立存在,而是受渤、黄、东海陆架潮流场控制而形成的一个完整的潮流沉积体系。渤、黄、东海陆架的砂质沉积与泥质沉积并非残留沉积,而是潮流沉积。在没有冷涡的情况下,黄、东海陆架的典型泥质沉积在弱潮流环境中同样可以形成,因此,认为冷涡并非黄、东海陆架典型泥质沉积形成的必要条件。  相似文献   

15.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

16.
Abstract

The excess pore pressure accumulation is a key factor when estimating the formation mechanism of large pockmarks, as it determines the liquefaction potential of marine sediments due to water waves. The governing equations for excess pore pressure may have different forms for various types of sediments and then shall reflect the cyclic plasticity of the soil. For water waves propagating over a porous seabed, the liquefaction area induced by waves is generally progressive, which indicates that the liquefaction area will move forward following the wave train. Therefore, the excess pore pressure accumulation can be used to explain the occurrence of the large pockmarks, but the dimension of the pockmark may be related to the heterogeneity of sediment or the wave properties affected by the topography in the subaqueous Yellow River Delta.  相似文献   

17.
极端波浪条件下黏土质斜坡海床稳定性解析   总被引:1,自引:1,他引:0  
海洋资源开发引起海底软黏土的结构性破坏,导致土体强度弱化,在百年一遇的极端波浪作用时极易发生斜坡海床的局部失稳甚至大范围海底滑坡,给海洋工程建设和正常运营带来严重影响。目前,主要采用极限平衡法评价这类海底斜坡,但该法只能给出近似解。基于极限分析上限方法,推导了极端波浪诱发的波压力对斜坡海床的做功功率,建立了外力功与内能耗散率平衡方程;利用最优化方法,结合数值积分和强度折减技术,求解了不同时刻的斜坡海床稳定性系数,并针对扰动后的斜坡海床开展了有限元解的对比验证。在此基础上,深入探讨了不同波浪参数(波长、波高和水深)和坡长小于一个波长等极端条件下的海底斜坡稳定性。  相似文献   

18.
The exploration and exploitation of marine georesources ordinarily disturbs the submarine soft clay surrounding construction areas and leads to a significant decrease in the shear strength of structured and sensitive clayey soils in submarine slopes. Under wave action, local slides can even trigger large-scale submarine landslides, which pose a serious threat to offshore infrastructure such as pipelines and footings. Therefore, accurately evaluating the stability of submarine sensitive clay slopes under wave-induced pressure is one of the core issues of marine geotechnical engineering. In this paper, a kinematic approach of limit analysis combined with strength reduction technique is presented to accurately evaluate the real-time stability of submarine sensitive clay slopes based on the log-spiral failure mechanism, where external work rates produced by wave-induced pressure on slopes are obtained by the numerical integration technique and then are applied to the work-energy balance equations. The mathematical optimization method is employed to achieve the safety factors and the critical sliding surfaces of submarine slopes at different time in a wave cycle. On this basis, the stability of submarine sensitive clay slopes under various wave parameters is systematically investigated. In particular, extreme wave conditions and special cases of slope lengths no more than one wavelength are also discussed. The results indicate that waves have some negative effects on the stability of submarine sensitive clay slopes.  相似文献   

19.
根据现场大风浪条件下的实测资料,粉质土海岸水体中的含沙量沿垂向具有上部均匀、近底突增的分布特点,即呈L型分布特征。利用黄河三角洲粉质土作为试验底床开展波浪水槽试验研究,揭示了底床粉质土在波浪作用下产生液化情况的水体含沙量沿垂向存在L型分布特征。根据试验现象以及悬沙粒度变化,分析认为底部高含沙层的形成主要受粉质土液化后细颗粒析出的影响,上部水体中悬沙由湍流脉动维持。对粉质土海岸大风天气期间水体含沙量剧烈增加采用波致粉质土液化的观点进行了初步解释。  相似文献   

20.
To simulate the wave-induced response of coupled pore fluids and a solid skeleton in shallow water, a set of solutions with different formulations (fully dynamic, partly dynamic, and quasi-static) corresponding to each soil behavior assumption is presented. To deal with Jacobian elliptic functions involved in the cnoidal theory, a Fourier series approximation is adopted for expanding the boundary conditions on the seabed surface. The parametric study indicates the significant effect of nonlinearity for shallow water wave, which also enhances the effect of soil characteristics. The investigation of the applicability of reduced formulations reveals the necessity of a partly or even fully dynamic formulation for the wave-induced seabed response problem in shallow water, especially for thickened seabed. The analysis of liquefaction in the seabed indicates that the maximum depth of liquefaction is shallower, and the width of liquefaction is broader under cnoidal wave loading. The present analytical model can provide more reasonable result for the wave-induced seabed response in the range of shallow water wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号