首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
Hydrographic mesoscale structures in the North-western Alboran Sea show a high variability induced by a number of different factors. One of the most important is the differences in atmospheric pressure over the Mediterranean basin when compared to the Gulf of Cádiz. This difference modulates the zonal wind field in the Alboran Sea and the intensity of the Atlantic inflow through the Strait of Gibraltar, also affecting the formation and extension of the Western Alboran Gyre (WAG). When westerly winds are dominant, lower atmospheric pressure in the Mediterranean enhances the inflow of Atlantic waters causing the Atlantic Jet to be located in the vicinity of the Spanish shore, creating a well-defined frontal zone in front of Estepona Cove. In this situation, the coastal upwelling is enhanced, leading to a minimum in sea surface temperature and a maximum of surface nutrient concentrations located in the coastal area. The vertical position of the chlorophyll maximum found in these circumstances appeared to be controlled by the nutrient availability. On the other hand, when easterly winds prevail, higher atmospheric pressure in the Mediterranean leads to a reduced inflow and the oceanographic and biological structures are clearly different. The Atlantic Jet moves southward flowing in a south-eastern direction, changing the structure of the currents, resulting in an enhanced cyclonic circulation extending throughout the North-western Alboran Sea basin. These physical alterations also induce changes in the distribution of biogeochemical variables. Maximum nutrient and chlorophyll concentrations are located further off the coast in the central area of the newly created cyclonic gyre. During these easterlies periods coastal upwelling stops and the distribution of phytoplankton cells seems to be mainly controlled by physical processes such as advection of coastal waters to the open sea.  相似文献   

2.
A new population of vestimentiferan tubeworms was discovered during a recent expedition to a mud volcano field in the Alboran Sea, western Mediterranean Sea. Morphological data and mitochondrial cytochrome-c-oxidase subunit 1 (COI) sequences show that the Alboran tubeworm is essentially identical to Lamellibrachia sp. found in the eastern Mediterranean. This is the first record of a vestimentiferan species in the western basin of the Mediterranean, an area with direct connection to the Atlantic via the Strait of Gibraltar and therefore of great importance to the study of distributional patterns and evolution of Mediterranean species. We examine the current hypotheses on the biogeographic distribution of vestimentiferan species in the eastern Atlantic and Mediterranean Sea and conclude that independently of when Lamellibrachia colonized the Mediterranean, neither the present hydrological settings of both Mediterranean Sea and Atlantic Ocean, nor vestimentiferans reproductive biology are impeditive to the presence of the Mediterranean species of Lamellibrachia in the NE Atlantic. The West African and Lusitanian margins are the most likely places to find living populations of this species in the NE Atlantic.  相似文献   

3.
Particulate biogenic barium (bio-Ba) fluxes obtained from three instrumented arrays moored in the Alboran Sea, the westernmost basin in the Mediterranean Sea, are presented in this study. The mooring lines were deployed over almost 1 year, from July 1997 to May 1998, and were equipped with sediment traps at 500–700 m depth, 1000–1200 m depth and 30 m above the seafloor (1000–2200 m). The results obtained support the growing body of evidence that the relationship between particulate bio-Ba and Corg throughout the water column in margin systems is clearly different from this relation in the open ocean. In the Alboran Sea, the annual averaged bio-Ba fluxes range from 0.39 to 1.07 μmol m−2 day−1, with mean concentrations of 1.31–1.69 μmol g−1 and bio-Ba/Corg ratios lower than in the open ocean. The low bio-Ba values obtained also indicate that calculating bio-Ba is extremely sensitive to the detrital Ba/Al ratio of each sample. The lithogenic Ba fraction in the Alboran Sea continental margin area contributes between 24% and 85% of the total Ba. Increased bio-Ba export efficiency was observed after periods of high primary productivity and suggests that the processes limiting the bio-Ba formation in the study area relate to settling dynamics of organic matter aggregates. Furthermore, the ballasting effect of the abundant lithogenic and carbonate particles may limit decomposition of organic matter aggregates and enhance the transfer of particles rich in Corg and relatively poor in bio-Ba to the deep seafloor. Lateral input of freshly sedimented biogenic material, including particulate bio-Ba, has been observed on the lower continental slope in the western Alboran Sea. These observations emphasize that the use of the bio-Ba as a proxy of export productivity from the surface ocean must be used cautiously in highly dynamic environments such as those in the Alboran Sea.  相似文献   

4.
The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy (Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.  相似文献   

5.
The effects of tidal forcing on the biogeochemical patterns of surface water masses flowing through the Strait of Gibraltar are studied by monitoring the Atlantic Inflow (AI) during both spring and neap tides. Three main phenomena are defined depending on the strength of the outflowing phase predicted over the Camarinal Sill: non-wave events (a very frequent phenomenon during the whole year); type I Internal wave events (a very energetic event, occurring during spring tides); and type II Internal wave events (less intense, occurring during neap tides).During neap tides, a non-wave event comprising oligotrophic open-ocean water from the Gulf of Cádiz is the most frequent and clearly dominant flow through the Strait. In this tidal condition, the inflow of North Atlantic Central Water (NACW) provides the main nutrient input to the surface layer of the Alboran Sea, supplying almost 70% of total annual nitrate transport to the Mediterranean basin. A low percentage of active and large phytoplankton cells and low average concentrations of chlorophyll (0.3–0.4 mg m−3) are found in this tidal phase. Around 50% of total annual phytoplankton biomass transport into the Mediterranean Sea through the Strait presents these oligotrophic characteristics.In contrast, during spring tides, patches of water with high chlorophyll levels (0.7–1 mg m−3) arrive intermittently, and these are recorded concurrently with the passage of internal waves coming from the Camarinal Sill (type I internal wave events). When large internal waves are arrested over the Camarinal Sill this implies strong interfacial mixing and the probable concurrent injection of coastal waters into the main channel of the Strait. These processes result in a mixed water column in the AI and can account for around 30% of total annual nitrate transport into the Mediterranean basin. Associated with type I internal wave events there is a regular inflow of large and active phytoplankton cells, transported in waters with relatively high nutrient concentrations, which constitutes a significant supply of planktonic resources to the pelagic ecosystem of the Alboran Sea (almost 30% of total annual phytoplankton biomass transport).  相似文献   

6.
The West Alboran Basin was previously classified as a mud volcanic province consisting of two mud volcano (MV) fields that are inactive at the present day: the Northern (Spanish) and the Southern (Moroccan) fields. The discovery of the first active mud volcano (Carmen; cruise TTR-17) in 2008, along with several pockmarks at the central part of the basin, motivates more careful geological and geochemical analysis of previous data and comparison to new observations.Gas bubbling from the crater of Carmen MV was observed and recorded using an underwater TV-system and a large TV-grab sample. The gas mainly consisted of methane with less than 1% wetness. However, all sets of homologues up to pentane were detected in the mud breccia of Carmen MV. Both molecular and stable carbon isotopic compositions, and their distribution along the core length, suggest a deep thermogenic source of hydrocarbons (HCs). Composition of the pore water from Carmen MV also points to a deep source of mud volcanic water. The isotopic results indicate that the source of mud volcanic water is the dehydration of clay minerals in the thermal zone of the smectite-to-illite transformation. Our observations allow us to infer the presence of structure II gas hydrates in mud breccia on the top of Carmen MV.High HC gas saturation in sediments in some pockmarks accompanied with live chemosynthetic fauna directly indicates the strong seepage activity of these structures. For the first time, authigenic carbonate crusts and chimneys with associated living chemosynthetic bivalves and tubeworms were sampled from a seep site in the West Alboran Sea. Authigenic carbonates consist of aragonite and calcite, and are characterized by a light carbon isotopic signature, up to −37.2‰ PDB, which points to their methane-derived origin.  相似文献   

7.
Neogene tectonic evolution of the Alboran Sea from MCS data   总被引:1,自引:3,他引:1  
The structural framework of the northern Alboran Sea is one of a series of grabens or half-grabens developed during various Miocene rifting stages. MCS profiles and well data reveal early to late Miocene seismo-stratigraphic units affected by rifting. Three rifting episodes—latest Aquitanian-Burdigalian, Langhian-Serravalian, and Tortonian-are postulated to have caused significant extension and crustal thinning beneath the Alboran Sea. The middle Miocene episode led to major depocenters and triggered mud diapirism. Post-Tortonian tectonics modified the architecture of the Miocene Alboran Basin and formed the present structure, seafloor morphology, and boundaries of the Alboran Sea.  相似文献   

8.
The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project.The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation.From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv).The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual event was noticed in November–December 2001, which corresponded to a very low transport (0.3 Sv), which was characterised by a cyclonic circulation in the western Alboran Sea. That circulation was also reproduced by the model for other periods than winter during the interannual simulation.The transport through the Strait of Sicily is not influenced by local wind.The wind stress curl of the northwestern Mediterranean influenced the transport through the Strait of Corsica.  相似文献   

9.
 Magnetic and gravimetric data from the central Alboran Sea allow identification of two axes of crustal thinning, which were probably active during the Oligocene–Early Miocene. The western Alboran basin axis is subparallel and may be related in origin to the Gibraltar Arc. The ENE–WSW trending Alboran Channel axis is probably intruded by basic igneous rocks and may represent the western end of the Algerian–Balearic basin rift. Present-day small areas with high heat flow may well be related to volcanism and an anomalous mantle. Areas of active deformation in the Alboran Sea accommodate the present Eurasia-Africa convergence. Received: 17 May 1996 / Revision received: 19 April 1997  相似文献   

10.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls. In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts, and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised. This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma.  相似文献   

11.
A high-resolution, regional, numerical-model-based, real-time ocean prediction system for the northern South China Sea, called the Northern South China Sea Nowcast/Forecast System (NSCSNFS), has been used to investigate subtidal mesoscale flows during the time period of the Asian Seas International Acoustic Experiment (ASIAEX) field programs. The dynamics are dominated by three influences; 1) surface wind stress, 2) intrusions of the Kuroshio through Luzon Strait, and 3) the large-scale cyclonic gyre that occupies much of the northern South China Sea. Each component primarily drives currents in the upper ocean, so deep currents are rather weak. Wind stress is especially effective at forcing currents over the shallow China shelf. The Kuroshio intrusion tends to flow westward until it meets the northern edge of the large-scale cyclonic gyre. Together, these currents produce an intense, narrow jet directed northwest toward the continental slope, often in the region of the ASIAEX field programs. Upon reaching the slope, the current splits with part flowing northeastward along the slope and part flowing southwestward, producing large horizontal and vertical shears and making this region dynamically very complicated and difficult to simulate. The Kuroshio intrusion tends to be stronger (weaker) when the northeasterly winds are strong (weak) and the large-scale gyre is farther south (north), consistent with conclusions from previous model studies. At the northern boundary, the model produces a persistent northward flow through Taiwan Strait into the East China Sea. Data assimilation in the NSCSNFS model is shown to dampen the system, extracting energy and causing the entire system to spin down.  相似文献   

12.
13.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

14.
Sterol and fatty alcohol biomarkers were analyzed in suspended and sinking particles from the water column (20–300 m) of the Almeria–Oran frontal zone to characterize the biogenic sources and biogeochemical processes. Diatom- and haptophyte-related sterols were predominant at all sites and vertical distributions of sterol, and fatty alcohol biomarkers in sinking particles were markedly different from suspended particles. In contrast to the relatively fresh sinking particles with elevated concentrations of phyto- and zooplanktonic sterols, suspended particles were extensively degraded with increasing depth and exhibited a more terrestrial and zooplanktonic signature with depth.Sterol and alcohol biomarkers distributions and δ13C values from the jet core and the associated gyre of Atlantic waters showed a decoupling between the sinking particles of 100- and 300-m depth, demonstrating the influence of lateral advection in the frontal zone. In contrast, vertical transport of the particulate organic matter in Mediterranean waters was interpreted from the similar isotopic and molecular composition at both depths. The high abundance of phytosterols and phytol below the euphotic zone at 100 m signified that downwelling of biomass occurred on the downstream side of the gyre. The high concentrations of phytosterols and POC, in combination with the high phytosterols/phytol ratio, indicated the accumulation of detrital plant material in the oligotrophic Mediterranean waters near the frontal zone.A higher contribution of phytol in the sinking particles collected during the night at the surface of the jet and at the upstream side of the gyre provided evidence of diel vertical zooplankton migration and important grazing by herbivorous zooplankton.Carbon isotope ratios of sterols confirmed that the 24-ethylcholest-5-en-3β-ol, commonly associated with terrestrial sources, was a substantial constituent of the phytoplankton in this area. However, the more δ13C depleted values obtained for this compound in suspended particles suggested that there was some terrestrial contribution that only becomes evident after degradation of the more labile marine organic matter.  相似文献   

15.
Line-transect data from sighting surveys conducted in the western Mediterranean (in 1991) and the Alboran Sea (in 1992) were analysed to estimate densities and numbers of striped and common dolphins in various areas of the western Mediterranean. Density of striped dolphins in the northwestern Mediterranean was estimated as 0.20 dolphins km−2 (CV = 0.24; 95% CI = 0.12 and 0.32) and was 41% higher than in the southwestern Mediterranean, where it was estimated as 0.12 dolphins km−2 (CV = 0.38; 95% CI = 0.05 and 0.25). The highest densities were observed in the Liguro–Provençal basin, with 0.24 dolphins km−2 (CV = 0.26; 95% CI = 0.14 and 0.40), and the Alboran Sea, with 0.20 dolphins km−2 (CV = 0.33; 95% CI = 0.10 and 0.36). These areas, and especially the Ligurian Sea, appear to be the most productive in terms of the food consumed by striped dolphins. Common dolphins were abundant only in the Alboran Sea with an estimated density of 0.16 dolphins km−2 (CV = 0.40; 95% CI = 0.08 and 0.35), scarce in the south Balearic area and almost absent in the northwestern Mediterranean. The magnitude of the dolphin by-catch in fishing operations in the Alboran Sea and other areas stresses the need for further assessment of densities and numbers, notably in the Alboran Sea and the North African Mediterranean waters.  相似文献   

16.
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic  相似文献   

17.
In summer 1996, a tracer release experiment using sulphur hexafluoride (SF6) was launched in the intermediate-depth waters of the central Greenland Sea (GS), to study the mixing and ventilation processes in the region and its role in the northern limb of the Atlantic overturning circulation. Here we describe the hydrographic context of the experiment, the methods adopted and the results from the monitoring of the horizontal tracer spread for the 1996-2002 period documented by ∼10 shipboard surveys. The tracer marked “Greenland Sea Arctic Intermediate Water” (GSAIW). This was redistributed in the gyre by variable winter convection penetrating only to mid-depths, reaching at most 1800 m depth during the strongest event observed in 2002.For the first 18 months, the tracer remained mainly in the Greenland Sea. Vigorous horizontal mixing within the Greenland Sea gyre and a tight circulation of the gyre interacting slowly with the other basins under strong topographic influences were identified. We use the tracer distributions to derive the horizontal shear at the scale of the Greenland Sea gyre, and rates of horizontal mixing at ∼10 and ∼300 km scales. Mixing rates at small scale are high, several times those observed at comparable depths at lower latitudes. Horizontal stirring at the sub-gyre scale is mediated by numerous and vigorous eddies. Evidence obtained during the tracer release suggests that these play an important role in mixing water masses to form the intermediate waters of the central Greenland Sea.By year two, the tracer had entered the surrounding current systems at intermediate depths and small concentrations were in proximity to the overflows into the North Atlantic. After 3 years, the tracer had spread over the Nordic Seas basins. Finally by year six, an intensive large survey provided an overall synoptic documentation of the spreading of the tagged GSAIW in the Nordic Seas. A circulation scheme of the tagged water originating from the centre of the GS is deduced from the horizontal spread of the tracer. We present this circulation and evaluate the transport budgets of the tracer between the GS and the surroundings basins. The overall residence time for the tagged GSAIW in the Greenland Sea was about 2.5 years. We infer an export of intermediate water of GSAIW from the GS of 1 to 1.85 Sv (1 Sv = 106 m3 s−1) for the period from September 1998 to June 2002 based on the evolution of the amount of tracer leaving the GS gyre. There is strong exchange between the Greenland Sea and Arctic Ocean via Fram Strait, but the contribution of the Greenland Sea to the Denmark Strait and Iceland Scotland overflows is modest, probably not exceeding 6% during the period under study.  相似文献   

18.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

19.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   

20.
The Neogene is the period in which the Betic Cordillera, the Rif, and the Alboran Sea acquired their present configuration. The Neogene sediments of the Betic Internal Zones (located directly to the North of the Alboran Sea) show the effects of important periods of deformation. Deposition was clearly controlled by tectonics. Therefore the generation, evolution, and total or partial destruction of basins and the formation of new, often superimposed, basins are common phenomena, according to the locations of the basins in the Betic Cordillera and to the different geodynamic situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号