首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
At present, the problem of predicting tsunamis with source earthquakes near the shoreline remains practically unresolved. It is shown that, in the Pacific region, 87% of tsunamigenous earthquake epicenters are located closer than 100 km to the shoreline and 67% are closer than 50 km. For a more detailed analysis, the area of the Pacific Ocean was divided into ten subregions: Kamchatka, the Kuril Islands, Japan, Indonesia, Australia and Oceania, South and Central America, Alaska, and the Aleutian Islands. Each subregion was analyzed individually. All the earthquakes from 1950 to 2003 with Ms >= 6.0 causing tsunamis with intensities I > 0 were processed. The ITDB/PAC 2004 database was used as the data source. For each subregion, mean and minimal travel times were calculated. The minimal travel times for all the regions except for a single one are less than 10 min. It is shown that, in the near earthquake zone, no tsunami alert based sea-level gauge data is possible. One probable solution could be based on detecting hydroacoustic signals that precede strong earthquakes in the near-shore zone.  相似文献   

2.
The distinguishing features of the seismicity throughout South Kamchatka and within the Avacha Bay seismic gap in the 20th century are considered. The evolution of the evaluation of the magnitudes of the strongest earthquakes for this gap from M = 7.25–7.5 in 1965–1980 to 7.75–8.0 after 1980 is discussed. On the basis of the method for studying the characteristic features of the seismicity within a seismic gap developed for the Central Kuriles, the seismicity of South Kamchatka is considered for depths of 0–100, 101–200, and more than 200 km according to the data from the New Catalog [6] for the period from 1901 to 1974 (M ≥ 6.1), the Special Catalog for North Eurasia [3] for the period from 1975 to 1993 (M ≥ 4.5), and additional data from the Kamchatka stations for the period from 1994 to 1997. It was found that the seismic process within the region of South Kamchatka is typical of the island arcs; i.e, most of the earthquakes considered and the maximum of the seismic energy released are concentrated in the lithosphere at depths of 0–100 km. The seismological situation in the zone of Avacha Bay is found to be similar to that within the second kind of the seismic gap during the precursory seismic quiescence of the 1978 Oaxac earthquake with M = 7.8 in Central Mexico. This allows us to consider the zone of Avacha Bay as a possible seismic gap of the second kind. Such a result can be considered as a suggestion of the possibility of the occurrence in Avacha Bay of an earthquake with M ~ 8 according to the long-term forecast for the region of the Kuriles and Kamchatka made by S.A. Fedotov.  相似文献   

3.
Based on the optimum P-wave model, the S-wave velocity structure of a wide angle seismic profile (OBS2006-1), across the northwestern sub-basin (NWSB) and the Macclesfield, is simulated by a 2-D ray-tracing method. The results indicate the S-wave velocities in the upper and lower crust of the NWSB are 3.2–3.6 km/s and 3.6–4.0 km/s, with Vp/Vs ratios of 1.82–1.88 and 1.74–1.82, respectively, which reflect typical oceanic crust characteristics. The S-wave velocity in the upper crust of the NWSB is a little higher in the NNW segment than that in the SSE segment, while the lateral variation of Vp/Vs ratio is in the opposite. We suggest that the NWSB might have experienced asymmetrical magma flows during sea floor spreading, which may have blurred the magnetic anomaly lineation. The comparison of S-wave velocities along the northern margin of the SCS shows that the west section is different from the east section, and the northwestern margin has a non-volcanic crust structure. The S-wave structures and P-wave velocity models along the northern margin, Macclesfield and Reed Bank show that the Macclesfield might have a conjugate relationship with the Reed Bank.  相似文献   

4.
The features of the seismic regime before the strongest earthquakes of Taiwan in the late 20th (Chi-Chi on September 21, 1999, Mw = 7.6) and the early 21st century (March 31, 2002, Mw = 7.4) are analyzed. Based on 1990–1999 and 1994–2002 data, respectively, retrospective analysis of three seismic regime parameters are studied: the total annual number of earthquakes NΣ in the range of ML = 2.5–5.5 and Mw = 3.0–7.0; the total annual quantity of released seismic energy ΣE, J; and angular coefficient b of earthquake recurrence graphs. Two explicit subperiods are revealed in the course of the seismic regime: quiescence in 1990–1996 before the Chi-Chi earthquake and in 1994–1997 before the March 2002 earthquake; in 1997–1999 and 1998–2002, respectively, seismic activation is observed. Due to the predominance of weak earthquakes during the Chi-Chi earthquake preparation, factor b appeared relatively higher (–1.16 on average); in contrast, before the March 2002 earthquake, due to the occurrence of foreshocks with Mw = 6.8–7.0, the factor b values appeared relatively lower (–0.55 and–0.74 for the quiescence and activation subperiods, respectively). Despite the fundamental difference in the seismotectonic situation between the domains where two mainshocks occurred and significantly difference energy ranges of the initial seismic events, the analysis results are similar for both earthquakes. In both cases, the mainshock occurred at the peak of released energy, which can be considered a coincidence. Solid verification of this positive tendency requires the accumulation of seismological statistics.  相似文献   

5.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   

6.
The South China Sea is the largest marginal basin of SE Asia, yet its mechanism of formation is still debated. A 1000-km long wide-angle refraction seismic profile was recently acquired along the conjugate margins of the SW sub-basin of the South China Sea, over the longest extended continental crust. A joint reflection and refraction seismic travel time inversion is performed to derive a 2-D velocity model of the crustal structure and upper mantle. Based on this new tomographic model, northern and southern margins are genetically linked since they share common structural characteristics. Most of the continental crust deforms in a brittle manner. Two scales of deformation are imaged and correlate well with seismic reflection observations. Small-scale normal faults (grabens, horsts and rotated faults blocks) are often associated with a tilt of the velocity isocontours affecting the upper crust. The mid-crust shows high lateral velocity variation defining low velocity bodies bounded by large-scale normal faults recognized in seismic reflection profiles. Major sedimentary basins are located above low velocity bodies interpreted as hanging-wall blocks. Along the northern margin, spacing between these velocity bodies decreases from 90 to 45 km as the total crust thins toward the Continent–Ocean Transition. The Continent–Ocean Transitions are narrow and slightly asymmetric – 60 km on the northern side and no more than 30 km on the southern side – indicating little space for significant hyper-stretched crust. Although we have no direct indication for mantle exhumation, shallow high velocities are observed at the Continent–Ocean Transition. The Moho interface remains rather flat over the extended domain, and remains undisturbed by the large-scale normal faults. The main décollement is thus within the ductile lower crust.  相似文献   

7.
A multi-channel seismic reflection image shows the reflection Moho dipping toward the Clipperton Fracture Zone in crust 1.4 my old. This seismic line crosses the fracture zone at its eastern intersection with the East Pacific Rise. The seismic observations are made in travel time, not depth. To establish constraints on crustal structure despite the absence of direct velocity determinations in this region, the possible effects of temperature, tectonism, and anomalous lithospheric structure have been considered. Conductive, advective, and frictional heating of the old crust proximal to the ridge-transform intersection can explain <20% of the observed travel-time increase. Heating has a negligible effect on crustal seismic velocity beyond ~10 km from the ridge tip. The transform tectonized zone extends only 6 km from the ridge tip. Serpentinization is unlikely to have thickened the seafloor-to-reflection Moho section in this case. It is concluded that, contrary to conventional wisdom, the 1.4 my old Cocos Plate crust thickens approaching the eastern Clipperton Ridge-Transform Intersection. Increase in thickness must be at least 0.9 km between 22 and 3 km from the fracture zone.  相似文献   

8.
A joint analysis of gravity anomaly and seismic travel-time data has been used to construct a three-dimensional velocity structure for the northeastern extension of the northern South China Sea’s high-magnetic belt in the Taiwan region. The earthquake data used in this study was collected by the Central Weather Bureau Seismological Network from 1991 to 2002, while the gravity data around Taiwan was compiled by Hsu et al. (1998), Terr. Atmos. Oceanic. Sci., 9, 509–532, and Wang et al. (2002), >Terr. Atmos. Oceanic. Sc., 13, 339–354. A modified velocity model obtained by local earthquake tomography was used to construct an initial three-dimensional gravity model, using a linear velocity–density relationship. To derive a crustal velocity–density model that accounts for both types of observations, this study performed a sequential inversion of travel-time and gravity data. The main features of our three-dimensional velocity model are:(1) an uplifted zone with velocity greater than 6.5 km/s being observed in the lower crust, (2) the width and the shape of the uplifted zone being found to be strongly correlated with the high-magnetic belt, (3) a trend by which the lower crustal high-velocity zone turns from northeast to north in central Taiwan, where the high-magnetic zone was truncated. A combination of seismic, gravity, and structural interpretations suggests that the crustal deformation relating to the magnetic truncation observed in northwestern Taiwan could be correlated closely with the collision between the Philippine Sea plate and the Asian continental margin.  相似文献   

9.
Seismic velocity measurements on the exposed Triassic to Cambro-Silurian sedimentary sequence on Bjørnøya show a velocity inversion in the stratigraphic section with a minimum velocity (3.8 km/s) in the Devonian fluvial sandstones of the Røedvika Formation, which also has the highest porosity (~ 17%). The low porosity in the younger formations is due to silicification and dolomitization probably by chemical alterations of the pore water rather than an overburden effect. Sonobuoy measurements in the vicinity of Bjørnøya show seismic velocities at the sea floor comparable with velocities of the exposed formations on the island itself.  相似文献   

10.
The tsunami warning system in the Russian Far East employs the medium-period magnitude MS (BB) by Vaniek–Soloviev. However, its use may lead to inadequacies and underestimates for the tsunamigenic potential of an earthquake. Specifically, this can happen in the case of a so-called tsunami–earthquake. This kind of earthquakes with a nonstandard spectrum was revealed by H. Kanamori in 1972. This problem can be overcome by using a magnitude scale that deals with longer period seismic waves. This study develops a technique for determining the magnitudes at regional distances (from 70 to 4500 km) using the amplitudes of surface seismic waves of periods of 40 and 80 s. At distances of 70–250 km, the amplitude of the joint group of shear and surface waves is used. For the new magnitudes designated M S(40) and M S(80), experimental calibration curves are constructed using more than 1250 three-component records at 12 stations of the region. The magnitudes are calibrated so as to produce an unbiased estimate of the moment magnitude M w in the critical range 7.5–8.8. The rms error of the single-station estimate M w is around 0.27. At distances below 250 km and M w ≥ 8.3, the estimate of M w obtained by the proposed technique becomes saturated at the level of M w ~ 8.3, which is acceptable for operative analysis because no missed alarms arise. The technique can be used in operational tsunami warning based on seismological data. This can markedly decrease the number of false alarms.  相似文献   

11.
The detailed seismic refraction investigation of the oceanic crust south of Shatsky Rise in the Northwestern Pacific revealed a low velocity zone (LVZ) with an average compressional wave velocity of 6.3 km/s within layer 3. This conclusion is based on the shadow zone for refractions on the travel time curves in their first arrivals from the M discontinuity. The LVZ may be composed of oceanic plagiogranites because serpentinization of peridotites would probably lead to an increase in crustal block volume with a concomitent decrease in density and thereby thickening and upwelling at the place of now “overdeepened” ocean would be expected.  相似文献   

12.
The results of temperature monitoring in the 300-m kun-1 well (Kunashir Island) in 2011–2015 are considered. Quasi-periodic temperature variations with an amplitude of up to 0.3°C and a variation period of 14–26 h were added from November 2011 to the previously observed temperature variations caused by tidal deformations, free thermal convection, and deformation processes associated with the preparation and occurrence of tectonic earthquakes. Five cycles of such variations lasting from 2 to 6 months have been recorded. Each cycle was initiated by an earthquake with magnitude M > 2.5log(R), where R is the epicentral distance (km). According to their characteristics, the variations are unique and have not been described previously. Assumptions have been made about the possible connection of the registered variations with the inertial currents of the ocean or with hydrothermal processes in the Earth’s subsurface. The phenomenon discovered requires further study not only as an object of fundamental science, but also as a feature of an earlier unknown type of geodynamic activity that can be a significant threat to the regional population.  相似文献   

13.
A number of archeological monuments in the northern Issyk-Kul Lake region (Tien Shan) in the basins of the Chet-Koysuu and Chon-Koysuu rivers are studied. All monuments have undergone significant seismogenic deformations and destructions. A cromlech (7th century BC to 8th centuries AD) was displaced along the sinistral strike-slip fault. A kurgan (7th–13th centuries AD) was deformed in a front of the reverse fault scarp. A fortress (14th–15th centuries AD) was submerged beneath the lake water during the catastrophic subsidence of the coastal zone. We identify a zone of the seismogenic rupture. It is located along the Kultor border fault, which separates the Issyk-Kul depression and its surrounding mountains (Kungey Ala-Too Range). During the earthquake, the seismogenic reverse fault scarp was formed. A total of 1.6 m was offset along the rupture, which corresponds to an earthquake with М S ≥ 7 and seismic intensity of I 0 ≥ IX. Judging by numerous radiocarbon datings of submerged wood, which was used in building the fortress (end of 14th to the beginning of 15th centuries AD), the earthquake occurred in the 16th century AD and could have caused the decline of the Mogul civilization in the northern Issyk-Kul Lake region.  相似文献   

14.
Existence of gas-hydrate in the marine sediments elevates both the P- and S-wave seismic velocities, whereas even a small amount of underlying free-gas decreases the P-wave velocity considerably and the S-wave velocity remains almost unaffected. Study of both P- and S-wave seismic velocities or their ratio (VP/VS) for the hydrate-bearing sediment provides more information than that obtained by the P- or S-wave velocity alone for the quantitative assessment of gas-hydrate. We estimate the P- and S-wave seismic velocities across a BSR (interface between gas-hydrate and free-gas bearing sediments) using the travel time inversion followed by a constrained AVA modeling of multi channel seismic (MCS) data at two locations in the Makran accretionary prism. Using this VP/VS ratio, we then quantify the amount of gas-hydrate and free-gas based on two rock-physics models. The result shows an estimate of 12–14.5% gas-hydrate and 4.5–5.5% free-gas of the pore volume based on first model, and 13–20% gas-hydrate and 3–3.5% free-gas of the pore volume based on the second model, respectively.  相似文献   

15.
This paper presents results of a seismic tomography experiment carried out on the accretionary margin off southwest Taiwan. In the experiment, a seismic air gun survey was recorded on an array of 30 ocean bottom seismometers (OBS) deployed in the study area. The locations of the OBSs were determined to high accuracy by an inversion based on the shot traveltimes. A three-dimensional tomographic inversion was then carried out to determine the velocity structure for the survey area. The inversion indicates a relatively high P wave velocity (Vp) beneath topographic ridges which represent a series of thrust-cored anticlines develop in the accretionary wedge. The bottom-simulating reflectors (BSR) closely follow the seafloor and lies at 325 ± 25 m within the well-constrained region. Mean velocities range from ~1.55 km/s at the seabed to ~1.95 km/s at the BSR. We model Vp using an equation based on a modification of Wood’s equation to estimate the gas hydrate saturation. The hydrate saturation varies from 5% at the top ~200 m below the seafloor to 25% of pore space close to the BSR in the survey area.  相似文献   

16.
The combination of a high-frequency ocean surface radar and a tsunami detection method should be assessed as the onshore-offshore distribution of tsunami detection probability, because the probability will vary in accordance with the signal-to-noise ratio (SNR) and the tsunami magnitude in addition to the radar system specifications. Here, we statistically examine the tsunami detection distance based on virtual tsunami observation experiments by using signals received by a high-frequency radar in February 2014 installed on the southern coast of Japan and numerically simulated velocities induced by a Nankai Trough earthquake. In the experiments, the Doppler frequencies associated with the simulated velocities were superimposed on the receiving signals of the radar, and the radial velocities were calculated from the synthesized signals by the fast Fourier transform. Tsunami arrival was then detected based on the temporal change in the cross-correlation of the velocities, before and after tsunami arrival, between two points 3 km apart along a radar beam. We found that the possibility of tsunami detection primarily depends on the kinetic energy ratio between tsunami current and background current velocities. The monthly average detection probability is over 90% when the energy ratio exceeds 5 (offshore distance: 9 km ≤ L ≤ 36 km) and reduces to 50% when the energy ratio is approximately 1 (L = 42 km) over the shelf slope. The ratio varied with the background current physics and SNR, which was mainly affected by ocean surface wave heights and ionospheric electron density.  相似文献   

17.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

18.
石岛地震台远震记录反演研究   总被引:7,自引:0,他引:7  
利用石岛地震台的远震体波记录,采用旋转相关函数法和接收函数法分别反演了台站下方介质的各向异性特征和速度结构.(1)对震中距25°~35°且记录良好的5次地震的ScS震相,采用旋转相关函数法反演了岩石圈的剪切波分裂参数.对深源地震的反演结果表明,石岛地震台快波偏振方向为N94°E,这意味着西沙附近处于近东西向微偏南的拉张或地壳下方的地幔流方向为近东西微偏南,西沙地区地壳是过渡性的,其底部的驱动力主要来自与欧亚板块运动一致的物质流.快慢波时间延迟为1.3 s,估算各向异性层厚度为100 km左右.(2)对震中距20°~60°的9次远震P波波形三分向记录,采用接收函数法反演了地壳和上地幔的S波速度结构.反演结果表明,石岛地震台下方地壳分为3层:约5 km以上有一速度梯度带,S波速度从1.5 km/s逐渐增加到3.5 km/s,其间有若干小的分层;在5~16 km的平均速度为3.8 km/s左右,其间有若干小的分层;在16.0~26.5 km的速度为3.6 km/s左右,这是一个明显的低速层;莫霍面埋深为26.5 km,莫霍面以下平均速度为4.7 km/s,也有若干小的分层,尤其是在莫霍面之下有一个明显的低速层.根据转换波到时分析和速度剖面左右摆动现象,认为反演结果中的小分层可能是不真实的,但在16.0~26.5 km的低速层的真实程度还是较高的,表明下地壳具有一定的塑性.  相似文献   

19.
Deep seismic sounding measurements were performed in the continent-ocean transition zone of the northern Svalbard continental margin in 1985 and 1999. Data from seismic profile AWI-99200 and from additional crossing profiles were used to model the seismic crustal structure of the study area. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and hydrophone systems (OBH). 3-D tomographic inversion methods were applied to test the previous 2-D modelling results. The results are similar to the earlier 2-D modelling, supplemented by new off-line information. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep. The continent-ocean transition zone to the east is characterized by a complex seismic velocity structure according to the 2-D model and consists of several different crustal blocks. The zone is covered by deep sedimentary basins. Sediment thicknesses reach a maximum of 5 km. The Moho interface deepens to 28 km depth beneath the continental crust of Svalbard.  相似文献   

20.
Seismicity characteristics in the areas of Sarez Lake and the Nurek water reservoir are studied. Ring-shaped seismicity structures in two depth ranges (0–33 and 34–70 km) formed prior to the Pamir earthquake of December 7, 2015 (M w = 7.2). Seismicity rings cross each other near the Usoi Dam, which formed after the strong earthquake in 1911 and led to the formation of Sarez Lake, and near the epicenter of the Pamir earthquake. In addition, three out of the four strongest events (М ≥ 6.0) recorded in the Pamir region at depths of more than 70 km since 1950 have occurred near Sarez Lake. An aggregate of the data allows us to conclude that the Pamir earthquake, despite its very large energy, refers to events related to induced seismicity. Ring-shaped seismicity structures in two depth ranges also formed in the Nurek water reservoir area. It is supposed that the formation of ring-shaped structures is related to the self-organization processes of a geological system, which result in the ascent of deep-seated fluids. In this respect, the lithosphere is gradually adapting to the additional load related to the filling of the water reservoir. The difference between Nurek Dam (and many other hydroelectric power stations as well) and Usoi Dam is the permanent vibration in the former case due to water falling from a height of more than 200 m. Such an effect can lead to gradual stress dissipation, resulting in the occurrence of much weaker events when compared to the Pamir earthquake of December 7, 2015, in the areas of artificial water reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号