首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

2.
We tested the idea that bacterial cells with high nucleic acid content (HNA cells) are the active component of marine bacterioplankton assemblages, while bacteria with low nucleic acid content (LNA cells) are inactive, with a large data set (>1700 discrete samples) based on flow cytometric analysis of bacterioplankton in the Northeast Pacific Ocean off the coast of Oregon and northern California, USA. Samples were collected in the upper 150 m of the water column from the coast to 250 km offshore during 14 cruises from March 2001 to September 2003. During this period, a wide range of trophic states was encountered, from dense diatom blooms (chlorophyll-a concentrations up to 43 μg l−1) at shelf stations during upwelling season (March–September) to lower chlorophyll-a concentrations (0.1–5 μg l−1) during winter (November–February) and at basin stations (>1700 m depth). We found only weakly positive relations of log total bacterial abundance to log chlorophyll-a concentration (as a proxy for availability of organic substrate), and of HNA bacteria as a fraction of total bacteria to log chlorophyll-a. Abundance of HNA and LNA bacteria co-varied positively in all regions, although HNA bacteria were more responsive to high phytoplankton biomass in shelf waters than in slope and basin waters. Since LNA cell abundance in general showed responses similar to those of HNA cell abundance to changes in phytoplankton biomass, our data do not support the hypothesis that HNA cells are the sole active component of marine bacterioplankton.  相似文献   

3.
We measured abundance and biomass of 3 major groups of microzooplankton, i.e. tintinnids, naked ciliates and copepod nauplii, at 21 stations in the Inland Sea of Japan in October 1993, January, April and June 1994. The average abundance of the microzooplankton over the entire Inland Sea of Japan ranged from 2.39×105 indiv. m–3 in January to 4.00×105 indiv. m–3 in April. Ciliated protozoans, i.e. tintinnids plus naked ciliates, numerically dominated the microzooplankton. The average biomass of the microzooplankton was exceedingly high in October (8.62 mg C m–3) compared to that in the other months (2.06, 2.79 and 2.68 mg C m–3 in January, April and June, respectively). The ciliated protozoans also dominated in terms of biomass except in October, when copepod nauplii were more important. Estimated production rate of the microzooplankton was highest in October (average: 6.02 mg C m–3d–1) and followed in order by June, April and January (1.94, 1.14 and 0.54 mg C m–3d–1, respectively). Due to higher specific growth rate, the production rate by the ciliated protozoans far exceeded that by the copepod nauplii. The trophic importance of the microzooplankton in the pelagic ecosystem of the Inland Sea of Japan was assessed by estimating carbon flow through the microzooplankton community.  相似文献   

4.
河北沿岸微微型浮游植物的分布特征   总被引:1,自引:0,他引:1  
于2006年7月~ 2007年10月间,分4个季度调查了河北省沿岸微微型浮游植物的丰度和生物量及对浮游植物总生物量的贡献.结果显示:河北近岸海域聚球藻蓝细菌丰度为4.46×103个/mL(0.79×103~ 16.19×103个/mL),生物量(以碳计,下同)为1.31 mg/m3 (0.84~17.47 mg/m3),季节分布特征为秋季>冬季>夏季>春季.微微型光合真核生物丰度为4.43×102个/mL (0.84×102~ 17.47×102个/mL),生物量为1.11mg /m3 (0.21~ 4.37 mg/m3),季节变化变现为秋季>冬季>春季>夏季.微微型浮游植物对浮游植物总生物量的贡献年平均为5.32%(1.84%~ 8.91%),春季最高,秋季最低.温度在较冷季节(冬春季)里是影响聚球藻蓝细菌生长和分布的控制因素.总之,在近岸环境里,微微型浮游植物并不占优势.  相似文献   

5.
Forty-two mesozooplankton samples were collected in the Barents Sea during the cruise of the R/V Dal’nie Zelentsy in August 2006. In total, 72 taxa of planktic animals were found. The minimal average mesozooplankton abundance was noted in the Murmansk coastal waters in the south of the sea (154 ind./m3), while the maximal was noted in the Arctic waters (1533 ind./m3). The average wet biomass varied from 32 to 830 mg/m3. The zooplankton abundance and biomass exceeded the relevant average long-term parameters by 1.5–2 times and by 1.2–1.4 times, respectively. The mean biodiversity (Shannon’s index) of the zooplankton communities was low: H′ = 1.62 ± 0.104 bit/ind.  相似文献   

6.
This study had the objective of quantifying the variability in abundance, cell volume, morphology and C content of a natural bacterioplankton community in a coastal zone of the North Adriatic Sea during two periods (February and June) of two consequent years (1996 and 1997). We used epifluorescence microscopy with Acridine Orange staining procedures and a microphotographic technique. Low variability in bacterial abundance (range 0.3–3.1 × 105 cells ml?1) occurred between summer and winter periods. Conversely, the cell volume and the calculated carbon content changed greatly with warm and cold periods (ranges: 0.015–0.303 μm3 and 5.83–42.17 fg C cell?1, respectively). Elongated bacteria were dominant while coccoid cells prevailed only in February 1997. Biomass showed high variability (range 0.12–10.21 μg C l?1) whilst the abundance did not show noticeable differences among the sampling periods. As a consequence, quantification of bacterial biomass based solely on cell abundance must be considered with caution because the true biomass could depend on variability in cell volumes and morphotypes.  相似文献   

7.
渤海小型底栖动物生物量的初步研究   总被引:15,自引:1,他引:15  
主要以线虫、桡足类、双壳类、多毛类和动吻5个类群对渤海小型底栖动物的生物量进行了估算,并对其水平分布进行了研究.结果表明,3个航次平均,渤海小型底栖动物年生物量为(干重)0.404g/(m2·a);1998年9~10月和1999年4~5月2个航次中小型底栖动物生物量的水平分布主要表现为渤海中东部和海峡口站位的生物量明显高于其他站位,但在1999年航次,海峡口靠近海岸的站位生物量下降,位于莱洲湾B1站位生物量明显上升.依据小型底栖动物的年生产力P=9B,估算渤海小型底栖动物的年平均生产力为(干重)3.636g/(m2·a).还对渤海小型底栖动物生物量与世界其他海域的进行了比较,认为渤海小型底栖动物生物量的数值与其他海域生物量的数值接近,但略偏低.就不同学者研究所得的线虫平均个体干重进行了比较研究.  相似文献   

8.
莱州湾大型底栖动物群落结构及其动态变化特征   总被引:1,自引:0,他引:1  
本文以莱州湾2009年夏季(8月)、秋季(10月)及2010年春季(5月)、夏季(8月)4个季节大型底栖动物资料为基础,对莱州湾大型底栖动物的种类组成、丰度、生物量、优势种进行了研究,同时与历史资料进行对比,探讨了莱州湾大型底栖动物的群落结构特征及动态变化。4个航次中共鉴定出大型底栖动物272种,其中包括环节动物多毛类122种,软体动物46种,甲壳动物64种,棘皮动物18种,鱼类9种,其他类13种。调查海域平均丰度为(1102.56 ± 216.32) ind./m2, 多毛类在丰度上占绝对优势;平均生物量为(28.16 ± 8.45) g/m2,软体动物占据优势。丰度和生物量空间分布规律具有很强的相似性,低值区位于莱州湾西部黄河口邻近海域,高值区位于渤海中部海域。丰度和生物量季节变化明显,夏季最高,秋季其次,春季最低。多毛类不倒翁虫(Sternaspis sculata)、寡鳃齿吻沙蚕(Nephthys oligobranchia)、紫壳阿文蛤(Alvenius ojianus)等是莱州湾调查海域的优势种。通过与历史资料的对比发现,莱州湾大型底栖动物种类组成及优势种类出现小型化的趋势。  相似文献   

9.
A study was carried out to investigate the grazing pressure of heterotrophic nanoflagellates(HNF) on bacteria assemblages in the Yellow Sea Cold Water Mass(YSCWM) area in October, 2006. The results show that the HNF abundance ranges from 303 to 1 388 mL-1, with a mean of 884 mL-1. The HNF biomass is equivalent to 10.6%–115.6% of that of the bacteria. The maximum abundance of the HNF generally occurred in the upper 30 m water layer, with a vertical distribution pattern of surface layer abundance greater than middle layer abundance, then bottom layer abundance. The hydrological data show that the YSCWM is located in the northeastern part of the study area, typically 40 m beneath the surface. A weak correlation is found between the abundances of HNF and bacteria in both the YSCWM and its above water layer. One-way ANOVA analysis reveals that the abundance of HNF and bacteria differs between inside the YSCWM and in the above water mass. The ingestion rates of the HNF on bacteria was 8.02±3.43 h-1 in average. The grazing rate only represented 22.75%±6.91% of bacterial biomass or 6.55%+4.24% of bacterial production, implying that the HNF grazing was not the major factor contributing to the bacterial loss in the YSCWM areas.  相似文献   

10.
In October and November of 2010, the gelatinous macroplankton in the northwestern Black Sea and at the Crimean shelf was represented by the scyphozoan jellyfish Aurelia aurita, three species of ctenophores (Beroe ovata, Mnemiopsis leidyi, and Pleurobrachia pileus), and three species of hydromedusae. A. aurita was more common at the shelf, M. leidyi and P. pileus prevailed at the deeper sea stations, and B. ovata was almost ubiquitous with a biomass from below 1 to 49 g/m2 A. aurita, which had an average biomass of 82–224 g/m2, was dominant at all the stations. M. leidyi, which had a biomass from below 1 to 115 g/m2, was recorded in October at only 14 of the 52 stations and in November at 20 of the 46 stations. The highest biomass of M. leidyi in October (105 to 116 g/m2) was recorded in the deep sea areas; in November, it was also the highest in these areas, but it reached at most 100 g/m2. The average daily ration of Aurelia ranged from 19.4 to 27.3 mg/m2 in October and from 7.0 to 17.2 mg/m2 in November; in both cases, it was insufficient to provide for the minimal physiological requirements. The average daily ration of the Mnemiopsis population (2.8–20.5 mg of zooplankton per m2) was invariably more than sufficient to provide for the minimal physiological requirements. Both predatory species together consumed less than 5% of the daily zooplankton production of the sea.  相似文献   

11.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

12.
The Atacama trench, the deepest ecosystem of the southern Pacific Ocean (ca. 8000 m depth) was investigated during the Atacama Trench International Expedition. Sediments, collected at three bathyal stations (1040–1355 m depth) and at a hadal site (7800 m) were analyzed for organic matter quantity and biochemical composition (in terms of phytopigments, proteins, carbohydrates and lipids), bacterial abundance, biomass and carbon production and extracellular enzymatic activities. Functional chlorophyll-a (18.0±0.10 mg m−2), phytodetritus (322.2 mg m−2) and labile organic carbon (16.9±4.3 g C m−2) deposited on surface sediments at hadal depth (7800 m) reached concentrations similar to those encountered in highly productive shallow coastal areas. High values of bacterial C production and aminopeptidase activity were also measured (at in situ temperature and 1 atm). The chemical analyses of the Atacama hadal sediments indicate that this trench behaves as a deep oceanic trap for organic material. We hypothesize that, despite the extreme physical conditions, benthic microbial processes might be accelerated as a result of the organic enrichment.  相似文献   

13.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

14.
胶州湾中部海域大型底栖生物生态学初步研究   总被引:6,自引:2,他引:4  
2006年8月~2007年10月分4个航次对胶州湾中部海域进行大型底栖生物调查。调查结果表明,大型底栖生物总平均丰度和总平均生物量为1507个/m~2和35.88g/m~2。与历史资料做了对比,并初步分析了与以往调查结果不同的原因。调查海域大型底栖生物多样性指数和丰度生物量比较曲线显示,胶州湾中部海域底栖生物处于轻微扰动状态。  相似文献   

15.
2012年9月对辽东湾西部倾倒区海域的大型底栖动物进行了调查。调查海域共发现底栖动物54种,包括多毛类35种,甲壳类10种,软体动物6种,棘皮动物1种,其他2种。底栖动物丰度平均为1 140.8个/m2,生物量为11.02 g/m2,多样性指数平均为3.39。丰度、生物量比较结果显示,调查海域大型底栖动物群落受到中度干扰,调查海域底栖动物群落可分为以对照组为主的群落和倾倒区群落。海洋倾倒导致倾倒区内大型底栖动物的种类数量、丰度、生物量和多样性水平下降,群落特征种受倾倒的影响较明显。底栖动物与重金属含量之间无显著相关关系,掩埋是辽东湾西部倾倒活动主要的影响方式。  相似文献   

16.
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 × 108 cells g−1 equivalent to 8.7 and 38.7 μgC g−1) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.  相似文献   

17.
采用DAPI荧光染色技术, 进行了2007年6月和2008年7月黄海底栖异养细菌的丰度和生物量及分布特点研究。结果表明, 2007年底栖细菌的丰度为(1.13±0.39)×109cells/cm3, 生物量为(49.63±17.26)?gC/cm3; 2008年底栖细菌的现存量较2007年低了约43%。南黄海的底栖细菌现存量较北黄海分别低8%(2007年)和13%(2008年), 而中央冷水团则较其外围区域高约10%和37%, 在南黄海呈现中央冷水区域高于近岸的分布特点, 而在北黄海则正相反。统计分析表明, 2007年北黄海底栖细菌丰度与沉积物叶绿素a含量呈极显著正相关, 南黄海细菌丰度与沉积物有机质含量及底层水盐度呈极显著正相关; 而2008年北黄海细菌丰度与环境因子未见明显的相关性, 在南黄海则与底层水的叶绿素含量呈极显著负相关, 显示浒苔暴发可能对底栖细菌产生了明显抑制。  相似文献   

18.
The Drake Passage region near Elephant Island in the Southern Ocean displays patchy phytoplankton blooms. To test the hypothesis that natural Fe addition from localized sources promoted phytoplankton growth here, a grid of stations (59°S to 62°S, 59°W to 53°W, as well as four stations in the eastern Bransfield Strait) were occupied from 12 February–24 March 2004. Phytoplankton abundance was measured using shipboard flow cytometry (70 stations), with abundances conservatively converted to biomass, and compared with measurements of dissolved iron (dFe) at a subset of stations (30 stations). Based on T–S property plots, stations were divided into Antarctic Circumpolar Current (ACC), Water On Shelf (WOS), Bransfield Strait (BS), and Mixed water stations, the latter representing locations with T–S properties intermediate between ACC and WOS stations. The highest integrated phytoplankton biomass was found at Mixed water stations, however, the highest integrated abundance was found at WOS stations, demonstrating that abundance and biomass do not necessarily show the same patterns. The distributions of nano- and micro-phytoplankton (<20 and >20 μm diameter cells, respectively) were also examined, with nano- and micro-plankton contributing equally to the total biomass at WOS and BS stations, but micro-plankton representing ∼2/3 of the biomass at Mixed and ACC stations. Increased inventories of dFe did not always correspond to increases in phytoplankton biomass – rather stations with lower mean light levels in the mixed layer (<110 μEinsteins m−2 s−1) had lower biomass despite higher ambient dFe concentrations. However, where the mean light levels in the mixed layer were >110 μEinsteins m−2 s−1, total biomass shows a positive trend with dFe, as does micro-phytoplankton biomass, but neither regression is significant at the 95% level. In contrast, if just nano-phytoplankton biomass is considered as a function of dFe, there is a significant correlation (r2=0.62). These data suggest a dual mechanism for the patterns observed in biomass: an increasing reservoir of dFe allows increased phytoplankton biomass, but biomass can only accumulate where the light levels are relatively high, such that light is not limiting to growth.  相似文献   

19.
北部湾北部海域水体异养细菌的时空分布特征研究   总被引:2,自引:1,他引:1  
贺成  徐沙  宋书群  李才文 《海洋学报》2019,41(4):94-108
为探讨环境因素对异养细菌丰度的影响,2016年9月至2017年8月通过月度航次调查对北部湾北部海域异养细菌丰度的时空分布特征进行了系统研究。结果表明,调查海区异养细菌丰度介于(2.75~56.86)×105 cell/mL,平均值为(11.01±6.31)×105 cell/mL。各季节细菌丰度从高至低依次为:夏季、春季、冬季、秋季。异养细菌丰度由近岸海域向西南深水区方向逐渐降低,在近岸浅水区垂直分布均匀,在水深大于20 m的海区出现季节性分层现象:表层细菌丰度较高,底层细菌丰度较低。主成分分析显示温度对异养细菌时空分布有重要影响,秋、冬季异养细菌丰度与温度呈显著负相关,在春、夏季呈显著正相关。细菌丰度与盐度呈显著负相关,说明海水盐度变化是细菌时空分布重要影响因素。异养细菌丰度与叶绿素a和溶解氧含量呈显著正相关,表明浮游植物初级生产过程影响了异养细菌的时空分布。在秋、冬和春3季异养细菌丰度与营养盐水平呈显著负相关,二者关系受浮游植物生物量间接影响。异养细菌时空分布差异取决于环境条件的变化,温度、盐度、叶绿素a和溶解氧含量是影响异养细菌丰度分布的主要因素。  相似文献   

20.
胶州湾大型底栖动物的丰度、生物量和生产量研究   总被引:3,自引:1,他引:2  
为了研究胶州湾大型底栖动物的丰度、生物量和生产量,于2002年3月、6月、8月和12月,在胶州湾北部软底区、大沽河口、黄岛养殖区及养殖区邻域选取4个站位进行采样,对大型底栖动物进行了定量研究。共采到大型底栖动物138种,总平均丰度、平均生物量(湿质量)和年生产量(有机碳)分别为1 719个/m2,27 g/m2,2.2 g/(m2.a),初步估算,胶州湾大型底栖动物的总次级生产量为2.8万t/a。与渤海和南黄海大型底栖动物的丰度和生物量比较,丰度和生物量均低于这两个海域,但是胶州湾大型底栖动物的总次级生产量高于渤海。本研究对于了解胶州湾大型底栖动物现状及湾内养殖对大型底栖动物的影响具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号