首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
长江口海域岛屿众多, 地形复杂多变, 对灾害性海浪模拟和预报能力的提升有迫切需求。本研究基于长江口高分辨率非结构网格海浪模式SWAN(Simulating WAve Nearshore), 结合“两洋一海”区域耦合预报系统模拟风场, 以2021年第14号台风“灿都”为例, 研究了台风轨迹、台风移速和台风风场分辨率等对长江口及邻近海域海浪模拟和预报的影响。结果表明: 风场模型水平分辨率增加有利于台风细结构和台风悬臂状结构的模拟。分辨率增加, 风速整体呈减弱趋势, 但在台风中心(小于两倍最大风速半径)和外围悬臂区域风速增加显著。风场分辨率从27 km提升至9 km和3 km, 波浪模拟精度增加显著, 3 km风场驱动的波浪模拟精度最高, 继续提升风场分辨率至1 km对波浪模拟无明显提升。改变风场模型分辨率同时会影响台风路径和移动速度。波浪场的差异反映了台风结构、路径和移动速度的共同影响, 由于波浪的波动传播属性, 台风浪的差异一般比风场差异的范围更大。  相似文献   

2.
文章基于中尺度天气预报模式(WRF)及其三维变分同化系统(WRF-3DVAR), 采用了两部雷达径向风资料, 进行单一时间分析以初始化台风“灿都”(Chanthu), 比较研究了同化雷达径向速度(Vr)对台风“灿都”分析和预报的影响。结果表明: 同化雷达径向风的作用主要体现在台风强度和环流结构的调整, 且在同化达到一定时长后, 对改进同化后的预报分析有积极效应。同化试验改进台风的初始风场以及台风环流中心的热力和动力结构、强度和位置, 进而提高18h预报的台风结构、路径、强度。  相似文献   

3.
Delft3D在天文潮与风暴潮耦合数值模拟中的应用   总被引:6,自引:0,他引:6  
储鏖 《海洋预报》2004,21(3):29-36
本文应用Delft-3D水动力学计算软件,以长江口地区为例建立的台风风暴潮、天文潮耦合数值预报模型,对台风风暴潮、天文潮两潮耦合预报模式进行探研和分析。该模式不同于以往的单纯台风增水模型与天文潮叠加的风暴潮模式,而是在计算中直接对天文潮和台风风暴潮进行两潮耦合,有效地消除了近岸地区潮波与增水之间叠加的非线性影响。通过模拟台风8114和7708过境对长江口的影响,并与实测数据比较,预报结果和实测水位过程的对比说明,台风风暴潮耦合数值预报模式对增水和高潮的过程预报是准确的,两者在高水位时同步且相差甚微。  相似文献   

4.
采用有限元法建立了一个适用于福建沿岸的天文潮-风暴潮耦合预报模式(FETSCM),模式采用三角网格,在福建沿岸平均网格分辨率为1 km,最高500 m.利用福建沿岸6个潮位站的实测资料对模型进行了验证,天文潮模拟结果与实测吻合良好,5个站位平均绝对误差为22 cm;31场历史台风期间6个站位风暴潮后报模拟误差为24 cm;天文潮-风暴潮耦合总水位的平均极值误差为20 cm,表明该耦合预报模式对福建沿岸的台风灾害预警有较好实用价值.  相似文献   

5.
基于SWAN模式和MATLAB GUI软件建立了福建沿岸天文潮-风暴潮-台风浪耦合漫堤预警系统。该系统包含天文潮-风暴潮-台风浪耦合计算模式和海堤预警显示两部分:天文潮-风暴潮-海浪耦合水位计算采用自主研发的FETSWCM模式(Finite Element Tide-Storm Surge-Wave Coupled Model),台风浪计算采用SWAN模式(Simulation WAve Nearshore),耦合计算时FETSWCM为SWAN提供风场、水位场及流场,SWAN为FETSWCM提供波浪辐射应力;海堤预警显示基于MATLAB GUI软件交互界面,根据模式计算波浪爬高所及高程结果(天文潮-风暴潮耦合水位与波浪爬高的和)对福建沿岸海堤进行可视化预警报。使用该系统进行两场台风过程福建省沿岸的漫堤后报检验,结果表明:1312号台风过程7条海堤及1319号台风过程东山县8条海堤漫堤预警准确率为87%。  相似文献   

6.
温州洞头中心渔港精细化浪潮耦合数值预报系统研究   总被引:2,自引:0,他引:2  
浙江温州沿海是我国台风风暴潮灾害的重灾区之一。本文基于目前国际上广泛应用的浪潮耦合模型(ADCIRC+SWAN),在洞头中心渔港附近建立了高分辨率的天文潮、风暴潮和近岸浪耦合数值预报系统。该系统综合考虑了天文潮、风暴潮和海浪的实时相互作用,系统对温州及洞头渔港区域的水平分辨率在100 m左右。通过近年来对温州洞头地区影响严重的台风风暴潮(含近岸浪)过程的后报模拟可以看到,该系统均能够较好的模拟天文潮的演进,准确的反映台风过程期间风暴潮、海浪的传播过程,精细化浪潮耦合预报系统采用了Matlab+GUI方式实现了计算结果的人机交互展示。  相似文献   

7.
齐鹏  王爱梅  曹蕾 《海洋科学》2013,37(12):99-111
将基于最优插值(OI)的同化并行模块植入第三代海浪模式WAVEWATCH III version3.14, 建立数据同化的台风海浪模式预报系统。该系统的强迫风场采用模型台风风场与台风来前海区背景风场混成的风场。以模式后报2010 年7 月严重影响南海北部的“康森”和“灿都”台风引起的海浪场为例, 首先对所构造的混合风场的台风海面风场结构进行定性检验, 并用高度计沿轨风速对混合风场精度进行定量验证。在此基础上, 海浪模式在混合风场强迫下边积分边同化。同化数据采用上述台风过境南海期间Jason-2 卫星高度计沿轨有效波高 (SWH)。值得指出的是, 同化时只取SWH 沿轨数据的一部分用于同化计算, 而另一部分沿轨数据则用于对同化分析结果进行检验。先后同化了4 条轨道上的SWH数据。将SWH 的同化分析与无同化的对照组结果分别与高度计测量SWH 比较, 发现同化较无同化可使均方根误差获得50%以上的明显改进。以同化分析场作为初始场, 同化影响预报(这里是后报)的时效性约在48 h 以内。本研究目的是通过同化高度计SWH 数据进一步提升台风海浪模式预报的准确度。  相似文献   

8.
四象限非对称风场对风暴潮的改进研究   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了Holland 模型风场和四象限非对称模型风场的差异和适用性,基于ADCIRC 模型建立了适合华南沿海的高分 辨率风暴潮模式,将上述两种模型风场作为强迫场分别模拟1117 号台风“纳沙”风暴潮过程,结果表明:在珠江口、琼州 海峡岸段的风暴潮模拟有了较大的改进,究其原因是四象限模型相比Holland 模型更灵活、能够更好刻画“纳沙”台风非对 称风场结构,说明该风场模型可用于改进风暴潮数值模拟。  相似文献   

9.
基于WRF模式同化QuikSCAT风场资料的初步试验   总被引:12,自引:0,他引:12  
利用美国最新推出的中尺度区域模式WRF(Weatherand Research Forecasting model)和中国数值预报创新基地开发的三维变分同化系统GRAPES(Global and Regional Assimilation and Prediction Enhanced System,1.0版本),以2002年台风“黄蜂”为例,通过控制试验和同化试验的对比分析,探讨了散射计风场资料同化对台风“黄蜂”三维结构分析和预报的影响。初步的结果显示,同化散射计风场资料对台风的大风风场分析、台风中心位置和海面气压场等都有明显的正效应,而对于预报场的改进相对有限。  相似文献   

10.
深圳香港海域浪潮耦合模型的建立及其应用   总被引:2,自引:0,他引:2  
姜茜  毛献忠 《海洋学报》2010,32(6):56-63
以河口海岸海洋模型ECOM和第三代海浪模型SWAN为基础,以全球天文潮预报模式TPXO6.2和台风参数模型风场及气压场作为驱动,采用海洋-陆架区-海岸三重嵌套网格,建立了适用于深圳香港水域天文潮-风暴潮-台风浪耦合模型。以0814号台风"黑格比"为算例,进行了耦合模拟计算,计算结果显示,天文潮、风暴潮位和浪高与实测值符合良好,天文潮的均方根误差小于0.15 m,有效波高误差0.9 m,风暴高潮位平均误差0.23 m;并分析了风暴潮位和波浪的相互影响,以及深港水域波浪场的分布,4 m水深考虑风暴潮位影响有效波高提高0.40 m,沿岸波浪增水在0.20 m以内。  相似文献   

11.
为研究江苏近海海域风暴潮的特性以及为该海域风暴潮增水变化机理及后报做铺垫,本文基于FVCOM(Finite Volume Coast and Ocean Model)海洋模式和Jelesnianski圆形台风风场模型,建立了江苏近海风暴潮数值模型,并对江苏近海的天文潮以及1109号台风和1210号台风引起的风暴潮进行模拟。结合验潮站水位观测,研究了连云港站和吕泗站的天文潮和风暴潮增水过程。我们将风暴潮与天文潮非线性作用下的风暴潮增水和纯风暴潮增水过程进行对比,讨论了天文潮与1109号和1210号台风风暴潮之间的非线性作用引起的增水特征。结果均表明,在天文潮高潮时,天文潮和风暴潮之间的非线性作用可以抑制增水,在天文潮低潮时,天文潮和风暴潮之间的非线性作用有利于增水。除了气象因子以及天文潮和风暴潮之间的非线性作用外,该海区的地理环境也对台风风暴潮增水产生影响。因此对江苏近海的海岸线变化和浅滩地形变化进行敏感性试验,结果表明,本文所设计的海岸线变化对该海域的风暴潮增水影响较小,江苏沿海岸线的向外推移使得江苏海域风暴潮的增水略微上涨,而本文所设计的地形的变化对风暴潮增水影响较大。  相似文献   

12.
本文在北黄海潮汐、天文潮与风暴潮耦合作用数值研究的基础上,建立了该区天文潮与风暴潮耦合作用下水位的数值预报方法,并取得了计算值与实测值较吻合的结果。  相似文献   

13.
铁山港海湾是一个遭受风暴潮灾害影响较为严重的半封闭型海湾,基于有限元海洋数学模型ADCIRC (Advanced Circulation Model)研究了1409号"威马逊"台风期间铁山港海湾的风暴潮特征及非线性作用。结果表明:当考虑天文潮与风暴潮之间的相互作用时,风暴潮水位的计算结果更加准确,只考虑纯台风影响时,计算结果会低估风暴潮增水值,高估减水值,对预报结果造成较大的误差。海湾内部的增水要远大于湾外,但是减水值则相差不大。通过对天文潮和风暴潮非线性作用的影响因子进行分析,风应力的浅水效应可以忽略,但底摩擦项和对流项影响较大。在海湾内部对流项占主导地位,与天文潮的耦合作用也较强;而在湾外,底摩擦项占优势,耦合作用在海湾内外都较强。天文潮与风暴潮相互作用产生的非线性水位在湾顶处最大可达0.94 m,出现在风暴潮最大减水时刻,风暴潮增水发生后有所减弱,非线性水位表现出从湾外向湾内递增的规律。  相似文献   

14.
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.  相似文献   

15.
选择20个对舟山海域有较大影响的历史台风案例,开展定海站实测潮位数据的分析与归纳,总结得出20个台风中风暴潮过程增水最大值为5612号台风的207.1 cm,风暴潮高潮位最大值为9711号台风的283.7 cm。同时,在三维斜压水动力模型SELFE的基础上加入台风气压场和风场模块,建立了一个采用非结构三角形网格的天文潮-风暴潮耦合模型,模拟表明定海站的斜压效应较为明显,非线性耦合作用相对较弱,但两潮耦合风暴潮增水结果仍优于风暴潮单因子增水结果,与实际增水更为接近。在此基础上,以一定间隔在5612号台风原路径南北两侧各设计了2条平行路径,分别模拟两潮耦合风暴潮增水,结果表明5612号台风参数沿其原路径偏南1个最大风速半径距离的S1路径运动时可模拟得到定海站可能最大风暴潮增水为243.9 cm。最后,在S1路径下模拟可能最大风暴潮增水分别遭遇天文高、中、低潮位时的风暴潮高潮位,结果表明天文潮高潮时可得到可能最大风暴潮高潮位约为400 cm,天文中潮时次之,而天文低潮时风暴潮高潮位最低。  相似文献   

16.
以秦皇岛、京唐港、曹妃甸、黄骅4个验潮站的实测潮位和逐时风的数据为基础,以2013年河北省政府发布的风暴潮四色警戒潮位值为标准,统计了2008-2017年10 a河北省沿海的风暴潮过程,从警报级别、区域分布、时间分布、天气系统、经济损失5个方面分析河北省沿海风暴潮特征,并从地形、天文潮与天气系统配合、海平面上升、全球变暖引发的气候异常4个方面分析了影响河北省沿海风暴潮的成因,分析得出:受天气系统的影响,7-10月是河北省风暴潮高发时段,且由于河北省岸线分布特点,沧州市沿海受到风暴潮影响的次数最多,唐山和秦皇岛次之,沧州和唐山地区的风暴潮过程多由东北向大风引起,而秦皇岛地区的风暴潮过程多由东南向风引起。  相似文献   

17.
建立能精确模拟舟山渔港台风暴潮过程的浪潮耦合模型,对渔港防灾减灾具有重要意义。基于Delft3D中的FLOW和WAVE模块,在二重嵌套网格下建立风暴潮和波浪的耦合模型。以9711号台风Winnie为背景,验证耦合模型的可靠性,结果显示,风速、天文潮潮位、风暴潮潮位和有效波高的计算值与实测值吻合良好。利用风暴潮模型与耦合模型分别计算了舟山海域的风暴潮,分析了波浪对风暴潮潮位的抬升影响,定海和镇海站最大波浪增水分别为23 cm和34 cm,耦合模型的模拟精度要高于风暴潮模型。通过模拟9711号台风期间舟山渔港的风暴潮过程,分析了风暴潮的时空分布特征,并给出了浪潮耦合作用对于风暴潮时空分布的影响。  相似文献   

18.
本文基于三维波流耦合FVCOM-SWAVE数值模式,采用Jelesnianski参数化风场与再分析数据集ECMWF风场数据叠加而成的合成风场作为外力驱动力,模拟了1818号"温比亚"台风引起北黄海及渤海海域风暴潮增减水及波浪的生长与消减过程,进而分析该海域在"温比亚"台风作用下波浪对流速垂向分布的影响。研究结果表明:合成风场得到的风速最大值及出现时刻与实测数据符合较好,合成风场较为合理,能够为模拟波流耦合机制下海域水动力变化提供准确的风场条件;几个测站的风暴潮增水模拟结果与实测数据较为吻合,FVCOM-SWAVE耦合系统合理地再现了"温比亚"台风在黄渤海引发的风暴潮增水以及台风浪过程。此外,计算结果显示"温比亚"期间黄渤海海域最大有效波高分布于台风中心外围,且位于台风前进方向上,波浪最大有效波高值与台风强度有关;在台风过境期间,波流相互作用对近岸海域流速的垂向分布具有一定影响,考虑波流相互作用可有效提高台风风暴潮数值模拟精度。研究结果对台风灾害预报、防灾减灾及港口建筑选址具有一定的参考意义。  相似文献   

19.
本文以实测资料为依据,统计分析了风暴潮灾、风暴潮、登陆台风、天文高潮等与月相的关系。统计资料表明,登陆台风和台风风暴潮发生在大(小)潮期的次数相对较多,略大于平均数,但它们与月相没有明显的因果关系,它们相对于月相的分布大致上是随机的,如果台风在天文大潮期间登陆,台风引起的暴潮与天文潮叠加后成灾的概率明显增大,但也不一定成灾;成了灾的,往往是风暴潮峰值适逢当日的天文高潮所致。  相似文献   

20.
浙江沿海超强台风作用下风暴潮增水数值分析   总被引:6,自引:1,他引:5  
基于河口海岸水动力二维数值模型,建立风暴潮与天文潮耦合作用的数值模式,通过三次强台风和二次超强台风引起的风暴潮增水模拟和分析,证实该模式可用于浙江沿海增水预测.以1949年以来登陆我国大陆沿海最强的"5612"号台风作为典型的超强台风,利用本模式计算分析了超强台风在浙北至浙南5个不同地点登陆遭遇大潮时可能出现的风暴潮增水过程和最大增水,该结果对于海岸工程的防护具有实际的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号