首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青岛近海碱度的研究及其测定方法的比较   总被引:1,自引:0,他引:1  
2012年春季以青岛近海为研究海域,采用pH单点法、自动电位滴定法及溶解无机碳(DIC)计算法测得海水总碱度(Alk),并对这3种方法进行比较;探讨该海域海水Alk的分布特征及影响因素;对过滤前后样品的Alk差值与叶绿素(Chl-a)间的相关性进行分析。结果表明:DIC计算法和pH单点法得出的Alk误差较大,电位滴定法测定的Alk结果精密度较高;青岛近海海域表层水体中Alk范围为2 070~2 364μmol/kg,其平均值2 310μmol/kg;过滤前后样品的Alk差值与Chl-a含量具有一定的相关性,表明浮游植物和颗粒物对Alk有影响。  相似文献   

2.
根据2009年8月“908”项目长江口补充调查总碱度(TAlk)、溶解无机碳(DIC)、pH值、溶解氧(DO)和叶绿素a(Chla)等数据的分析结果显示,长江口及邻近东海海域夏季溶解无机碳(DIC)含量分布范围在1 647.1~2 236.9 μmol/dm3之间,平均值为2 031.2 μmol/dm3;空间分布为由...  相似文献   

3.
根据2007年8月(夏季),11月(秋季),2008年1月(冬季)和2010年4月(春季)在胶州湾海域测得的p H、溶解无机碳(DIC)、总碱度(Alk),以及通过以上参数计算得到的二氧化碳分压(p CO2)的数据,结合现场的化学、水文、生物等参数,探讨和分析了该海域的二氧化碳各参数的分布特征、季节变化和影响因素。结果表明:胶州湾p H、DIC、Alk和p CO2的年变化范围分别为:7.77—8.30,1949.2—2201.8μmol/kg,2033.9—2382.5μmol/kg和89.9—745.3μatm,均呈现明显的时空变化。温度是影响胶州湾碳酸盐体系的主要影响因素之一,同时陆地径流和降水会降低海水碳酸盐体系中各参数的含量,但是人类活动和生物活动也会在一定程度上增加DIC、Alk和p CO2的含量。  相似文献   

4.
夏季黄海海水碳酸盐体系特征   总被引:1,自引:0,他引:1  
根据2016年7月对黄海海域碳酸盐体系参数pH和总碱度(A_T)开展的调查,结合温度、盐度、营养盐及叶绿素等同步观测数据,分析了夏季黄海海水碳酸盐体系的特征并讨论了其控制机制。结果表明,碳酸盐体系特征在不同水团间差异很大。表层与底层pH分别在7.915~8.307和7.849~8.074之间,高值位于长江冲淡水和黄海沿岸流中。表层与底层A_T分别为2063~2358μmol/kg和2205~2372μmol/kg,总体表现为由南往北递增。长江冲淡水A_T较低,黄海沿岸流A_T较高。海水总溶解无机碳(C_T)在黄海北部山东半岛附近含量较高,底层明显高于表层。表层海水二氧化碳分压(pCO_2)与表层C_T变化趋势相似。霰石饱和度(?_(Ar))在底层较低,最低值仅为1.28。Pearson相关分析结果显示,水团中A_T与盐度的相关性较大(R0.7),pH与营养盐的相关性较大。说明碳酸盐体系特征主要受水团混合和生物活动的影响。水团混合是影响A_T分布的主导因素。表层营养盐浓度过低导致浮游植物生长受限,受限区域pH变化不大,底层再矿化过程释放大量CO_2导致底层pH降低。  相似文献   

5.
杭州湾作为典型的高浑浊度海湾,对其水体碳酸盐体系分布特征的研究相对较少。本文基于两个夏季航次(2018年和2019年)获取的调查资料,阐述夏季杭州湾水体中碳酸盐体系参数的空间分布特征,并进一步分析影响溶解无机碳偏离保守混合作用的主要过程及相对贡献。数据结果表明,杭州湾内表层溶解无机碳浓度与总碱度的变化范围分别为1 553~1 964 μmol/kg和1 577~2 101 μmol/kg,略低于长江口(1 407~2 110 μmol/kg和1 752~2 274 μmol/kg),溶解无机碳浓度和总碱度的空间分布受控于淡水与外海水混合的影响,在潮汐作用下,总体呈现出湾内低,向湾外逐渐升高的趋势。影响表层溶解无机碳非保守混合分布的主要过程中,海?气交换降低溶解无机碳浓度,呼吸作用增加溶解无机碳浓度,两个过程对溶解无机碳浓度变化量的贡献分别为(?42.3±11.7)%与(34.2±14.3)%,净效应呈现为相对平衡的状态。通过计算获得表层海水pCO2的平均值为799 μatm (675~932 μatm),海湾总体表现为大气CO2的源。此外,湾内海水碳酸盐缓冲因子的范围为12.8~23.8,对CO2的缓冲能力弱于邻近东海海水(缓冲因子平均值约为11.9),指示其与外部水体的交换可能会降低附近海域的酸化缓冲能力。相对其他河口/海湾而言,杭州湾内高浊度与强潮汐的特点使其湾内水体的碳酸盐体系分布特征具有区域特殊性。  相似文献   

6.
于2014年分4个季度对大亚湾4个典型功能区(人工鱼礁区、水产养殖区、核电站温排区和石化排污区)以及湾口区表层海水的温度、盐度、p H、总碱度(TA)等进行了调查,比较分析了不同区域表层水体溶解无机碳(DIC)体系的组成和分布特征,估算了海?气界面CO2的交换通量(FCO2),并对FCO2的主要影响因素进行了分析。结果显示,调查海域表层水体的DIC、HCO3–、CO32–浓度和CO2分压pCO2年变化范围分别为1248.8~1841.9μmol·kg–1(1624.8?143.1μmol·kg–1)、1069.2~1615.7μmol·kg–1(1382.5?126.1μmol·kg–1)、152.7~283.5μmol·kg–1(236.2?35.4μmol·kg–1)、11.4~44.9Pa(21.2?7.4Pa);各区域间的DIC、HCO3–、CO32–和pCO2无显著差异(P0.05)。表层海水FCO2的年变化范围为–37.3~4.5mmol·(m2·d)–1[–22.4?9.8mmol·(m2·d)–1],各区域FCO2(按正负数值大小)的季节变化呈现夏季秋季春季冬季的特征,且夏季显著高于其他季节(P0.05);在全年尺度上,各区域的FCO2均为负值,表现为大气CO2的汇,碳汇强度呈现湾口区鱼礁区排污区温排区养殖区的特征,而各区域间无显著差异(P0.05)。偏回归分析显示,大亚湾湾口区和养殖区的FCO2时空分布主要受盐度影响,在鱼礁区和温排区主要受温度的影响,而在排污区则主要受海水p H的影响。  相似文献   

7.
针对两种常见的海洋pCO2测量仪器(基于水汽平衡法的pCO2自动监测系统Underway pCO2System及采用膜分离技术实现水汽分离的pCO2原位传感器HydroC/CO2)开展了室内比对试验。通过加入Na2CO3/NaHCO3或H3PO4调节水池内水体pH值控制比对环境的pCO2,在10个水平下采集了两台仪器的测量数据,通过对同步采集水样的总溶解无机碳(DIC)、总碱度(TA)及pH测定,计算得到pCO2的理论值。通过数据分析发现3组结果间一致性很好(相关系数R2均达到0.99以上),但彼此间存在较大的"系统差"——两台仪器间测量差值在50~80μatm之间,差值的平均值及标准差s为(64.52±9.52)μatm;Underway pCO2System及HydroC/CO2与CO2sys计算值之间的差值分别在15~80μatm间及-2~-50μatm间,平均值及标准差分别为(40.67±15.88)μatm及(-23.86±14.90)μatm。  相似文献   

8.
根据2003—2008年东海及黄海南部海域多个航次现场观测获得的海表温度、盐度及海水表层pCO_2观测数据,分析该海域海水表层pCO_2及海-气CO_2通量的季节变化特征,探讨了海-气界面CO_2转移与海表温度、盐度分布之间的联系。结果表明:该海域海水表层pCO_2及海-气CO_2通量具有显著的季节性差异。近海区域,春季受海表温度上升、生物作用加强的影响黄海南部、东海近岸区及陆架中部、东海南部表现为大气CO_2汇,其海-气界面季平均通量分别为(-7.77±6.59),(-11.08±8.99),(-2.94±6.78)mmol·m~(-2)·d~(-1)。夏季黄海南部区域表现为大气CO_2源(2.99±6.09)mmol·m~(-2)·d~(-1),与该海域的下层海水涌升有关,东海中部陆架区及东海南部近岸区由于淡水输入,形成跃层阻碍水体混合,再加上光合作用增强等的综合作用为大气CO_2汇,通量为(-4.81±8.92),(-0.75±12.14)mmol·m~(-2)·d~(-1)。秋季北风逐渐增强水体混合加剧,向冬季格局转变,底层富含CO_2的海水上涌,致使海表pCO_2升高,整个海区表现为大气CO_2源。在年际变化上,春季碳汇呈减弱趋势,而秋季碳源则逐渐增强。  相似文献   

9.
莱州湾海水中营养盐分布与富营养化的关系   总被引:21,自引:2,他引:21  
根据2001年5月和9月2个航次莱州湾海区海水营养盐等的调查资料,分析了该海域海水中5项营养盐的分布特征及时空变化,评价了水质的富营养化状况。结果表明,溶解无机氮的平均浓度为9.80μmol/dm3,2个季节中溶解无机氮以NO3-N浓度为最高,平均为7.61μmol/dm3,占总无机氮的77.65%,是莱州湾海水中的无机氮主要形式;活性磷酸盐的平均浓度为0.48μmol/dm3,活性硅酸盐的平均浓度为11.31μmol/dm3。研究发现,莱州湾海水中溶解无机氮和活性磷酸盐浓度分别是12 a前的2.03倍和3.2倍。DIN∶P,Si∶P,Si∶DIN比值分别为69.5,34.2,1.4;因此,磷酸盐为限制因素。按照营养状态指数值,莱州湾海区湾顶近岸海域划分为富营养化区,秋季一旦水文气象等条件适宜有发生赤潮的可能。  相似文献   

10.
于2014年的5月(春季)和9月(秋季)在台湾海峡及其邻近南海和东海海域,采用水气平衡法进行了2个航次的海表和大气pCO_2连续走航观测,同时获取了海表温度、海表盐度、风速及气压等数据,并采用海-气CO_2分压差减法估算了海-气CO_2通量.结果显示,春、秋2个航次平均海表pCO_2分别为387±16μatm和408±18μatm.温度是影响台湾海峡及其邻近海域海表pCO_2的主控因子,水团混合和其他因素等也对海表pCO_2有一定影响.2014年春、秋季节,对研究区域的海-气CO_2释放通量的估算结果分别为0.11±1.60 mmol/(m2·d)和2.51±1.10 mmol/(m2·d).台湾海峡海表pCO_2既存在显著的季节变化,又存在较大的空间差异.  相似文献   

11.
本文对2012年秋季中国东海31个站位的海水样品中溶解态氨基酸(THAA)和颗粒态氨基酸(PAA)的分布与组成进行了研究。结果表明:表层海水中溶解游离氨基酸(DFAA)的平均浓度为0.12±0.04 μmol/L (0.06~0.19 μmol/L),溶解结合氨基酸(DCAA)的平均浓度为0.61±0.51 μmol/L (0.15~1.79 μmol/L),PAA的平均浓度为0.11±0.06 μmol/L (0.02~0.27 μmol/L)。THAA的水平分布特点大致为近岸高、远岸低;PAA的水平分布特点是近岸海域向远海海域分布呈现逐渐减小的趋势。THAA的垂直分布特点是由表层向底层逐渐降低。DCAA、PAA与Chl-a有很好的相关性,而DFAA与Chl-a的相关性不明显。东海表层海水中THAA的主要组分是天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、苏氨酸及丙氨酸,PAA的主要组分是天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、丙氨酸及亮氨酸。在表层海水中氨基酸是作为一个整体而对海洋生物地球化学过程产生影响的。  相似文献   

12.
海底地下水排放对典型红树林蓝碳收支的影响   总被引:1,自引:0,他引:1  
海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。  相似文献   

13.
本文简要总结了海洋酸化时间序列研究的主要方法,重点综述了时间序列研究在揭示海洋酸化长期变化方面的重要进展。大气中 CO2 不断溶解进入海洋,导致海水 pH 与碳酸钙饱和度 (Ω) 降低,这一过程即为海洋酸化。海洋酸化时间序列研究主要关注 pH 与Ω的实时、动态、长期变化。在海洋酸化时间序列研究中,pH 一般通过锚泊浮标所搭载的传感器现场获得,而Ω则需借助相关参数间接计算得到。目前全球共有 21 套正在运行的锚泊浮标,分别布设在大洋、近岸和珊瑚礁等海域,记录了近十几年来全球典型区域海洋酸化的长期变化过程。受上升流、生产力、陆源输入等因素的协同影响,近岸海域的酸化现象极具季节/年际变化,pH 和Ω 的变化范围较大,分别为 7.780~8.723,1.07~9.25。大洋的 pH 变化范围为 7.890~8.238,珊瑚礁的 pH 变化范围为 7.837~8.273,大洋的Ω变化范围为 1.93~4.19,珊瑚礁的Ω 变化范围为 2.06~5.22。海洋酸化时间序列研究表明,受人为活动与气候变化的共同影响,北半球近岸典型海域的Ω在冬季和春季已出现低于生物耐受阈值的现象,将产生十分严重的生态危害,需要尽快采取应对措施。  相似文献   

14.
依据2013 年夏季和秋季对黄海海域两个航次的调查结果,对该海域溶解无机氮的季节变化,垂直变化,平面分布状况及其影响因素进行了初步分析和探讨。结果表明,该海域溶解无机氮的分布及组成存在明显的季节性:秋季NO3-N的平均浓度为(7.09±4.15)μmol/dm3,远高于夏季(3.21±3.31) μmol/dm3;夏季NH4-N 含量(0.99±0.95)μmol/dm3 较秋季(0.79±0.82)μmol/dm3 高;夏、秋两个季节溶解无机氮的主要组成部分均为NO3-N,其比例约为70 %和90 %。受浮游植物生长、海水层化以及黄海冷水团存留的影响,调查海域夏季表层溶解无机氮的浓度较低,底层浓度较高;此外,研究海域表层溶解无机氮的分布明显受陆源输入控制,表层溶解无机氮的整体呈现出近岸高外海低的现象,NH4-N的高值区主要出现在靠近城市的近岸海区。该论文可以为该海域氮盐的海洋化学循环研究及赤潮等有害藻华的预防提供科学的理论依据。  相似文献   

15.
基于中国第30次南极科学考察在南极半岛(60°~63°S)近岸海域获取的调查资料,分析了该海域生物化学要素中溶解有机碳(DOC)、总氮(TN)和总磷(TP)分布特征并讨论地形和水团对其的影响。结果表明:2014年夏季南极半岛近岸海域水体DOC浓度变化范围为40.5~78.1μmol/L,平均浓度为66.3μmol/L;TN浓度变化范围为4.2~29.5μmol/L,平均浓度为14.9μmol/L;TP浓度变化范围为0.8~2.9μmol/L,平均浓度为2.0μmol/L。表层DOC呈现研究海域西北部D1断面和东南部D5断面浓度较高,中部DOC浓度较低;表层TN与TP浓度高值区出现在研究海域西部D1断面北部以及南部,中部和东部浓度较低;DOC,TN和TP浓度的垂直分布与海底地形和水团交汇密切相关,水团运动受阻于地形致使生物化学要素在垂直方向再分布。DOC,TN和TP空间分布反映了南极半岛近岸海域生物化学要素复杂的流通,将为合理开发和利用南极资源及环境影响评价提供科学依据。  相似文献   

16.
海水碳酸盐体系参数是反映碳循环调控机理和季节性酸化过程的重要海水化学参数.本文根据2011年3月、7月、11月和12月4个不同季节航次获取的长江口海域海水碳酸盐体系参数,探讨了长江口-东海P断面溶解无机碳(DIC)和总碱度(T A)的空间分布特征及其影响因素.结果表明:内陆架区,DIC和T A的平均值均表现为:夏季<秋季<冬季<春季;垂直分布上,夏季和秋季受长江冲淡水影响出现层化现象,春季和冬季均垂直混合较均匀.东海内陆架DIC与温度和DO呈显著负相关;T A则受温度和DO变化影响较小,与盐度呈正相关.结合2011年东海外陆架的PN断面数据分析,DIC和pH分别与表观耗氧量(AOU)呈显著正相关和负相关,东海外陆架的pH/AOU的斜率为-0.0027 pH/(μmol·kg-1);而内陆架区的pH/AOU的斜率为-0.0018 pH/(μmol·kg-1),低于黑潮次表层水中pH/AOU的斜率.东海内陆架区由于存在季节性的通风作用以及较强的海水碳酸盐体系缓冲能力,底层水体中因有机质耗氧降解导致的季节性酸化信号在一定程度上得到了缓解.  相似文献   

17.
李宁  王江涛 《海洋科学》2011,35(8):5-10
根据2010年4月在东海北部近岸的调查,分析了研究海域溶解无机碳(DIC)和溶解有机碳(DOC)的含量及其分布状况,并分别对DIC、DOC与温度、盐度、表观耗氧量等要素的关系进行了初步探讨。结果表明,春季研究海域表、底层DIC平均含量分别为24.54mg/L和25.03mg/L,平面分布趋势均为近岸高于远岸,象山口附近...  相似文献   

18.
The third Chinese National Arctic Research Expedition(CHINARE) was conducted in the summer of 2008.During the survey,the surface seawater partial pressure of CO_2(pCO_2) was measured,and sea water samples were collected for CO_2 measurement in the Canada Basin.The distribution of pCO_2 in the Canada Basin was determined,the influencing factors were addressed,and the air-sea CO_2 flux in the Canada Basin was evaluated.The Canada Basin was divided into three regions:the ice-free zone(south of 77°N),the partially ice-covered zone(77°–80°N),and the heavily ice-covered zone(north of 80°N).In the ice-free zone,pCO_2 was high(320 to 368μatm,1 μatm=0.101 325 Pa),primarily due to rapid equilibration with atmospheric CO_2 over a short time.In the partially ice-covered zone,the surface pCO_2 was relatively low(250 to 270 μatm) due to ice-edge blooms and icemelt water dilution.In the heavily ice-covered zone,the seawater pCO_2 varied between 270 and 300 μatm due to biological CO_2 removal,the transportation of low pCO_2 water northward,and heavy ice cover.The surface seawater pCO_2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin,and it was a net sink for atmospheric CO_2.The summertime net CO_2 uptake of the ice-free zone,the partially ice-covered zone and the heavily ice-covered zone was(4.14±1.08),(1.79±0.19),and(0.57±0.03) Tg/a(calculated by carbon,1Tg=10~(12) g),respectively.Overall,the net CO_2 sink of the Canada Basin in the summer of 2008 was(6.5±1.3) Tg/a,which accounted for 4%–10% of the Arctic Ocean CO_2 sink.  相似文献   

19.
秋季东海溶解态和颗粒态氨基酸的组成与分布   总被引:1,自引:0,他引:1  
本文对2012年秋季中国东海31个站位的海水样品中溶解态氨基酸(THAA)和颗粒态氨基酸(PAA)的组成与分布进行了研究。结果表明:表层海水中溶解游离氨基酸(DFAA)的平均浓度为(0.12±0.04)μmol/L(0.06—0.19μmol/L),溶解结合氨基酸(DCAA)的平均浓度为(0.61±0.51)μmol/L(0.15—1.79μmol/L),PAA的平均浓度为(0.11±0.06)μmol/L(0.02—0.27μmol/L)。THAA的水平分布特点大致为近岸高、远岸低;PAA的水平分布特点是近岸海域向远海海域分布呈现逐渐减小的趋势。THAA的垂直分布特点是由表层向底层逐渐降低。DCAA、PAA与chl a有很好的相关性,而DFAA与chl a的相关性不明显。东海表层海水中THAA的主要组分是天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、苏氨酸及丙氨酸,PAA的主要组分是天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、丙氨酸及亮氨酸。在表层海水中氨基酸是作为一个整体而对海洋生物地球化学过程产生影响的。  相似文献   

20.
基于2013年9月底至10月初在印尼爪哇岛南部海域调查得到的碳酸盐参数和相关水文数据,首次报道了该海域pH的分布,并重点探讨了南爪哇上升流(季风上升流)对其影响。结果显示上升流影响区表层pH低于周围非上升流影响区。通过两端元混合模型,定量讨论了上升流的物理输运和生物活动对pH的影响。研究表明,上升流的物理输运至少造成了海表层盐度增加0.4个单位,溶解无机碳(DIC)增加110μmol/kg,pH降低约0.2个单位;同时,在上升流区,强烈的生物活动(叶绿素a浓度大于0.4mg/m3)使得DIC的降低量达70μmol/kg,pH的增加量达0.15个单位。总体来看,该研究区域的物理输运作用大于生物作用,综合效应表现为DIC的增加和pH的降低。另外,同上升流的物理输运作用和生物作用相比,上升流引起的表层冷却和增盐对pH的影响较小(热力学作用)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号