首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
韩莎  胡炜  李成林  赵斌  严芳 《海洋科学》2016,40(3):10-16
为确立一种准确测量仿刺参体长的方法,选用薄荷醇(menthol)为麻醉剂,在不同麻醉浓度条件下,观察了对仿刺参(Apostichopus japonicus)幼参的麻醉反应,同时比较了在不同水温(11、13、15、17、19、21℃)环境条件下对不同规格((L)42.37 g±1.99 g、(M)22.91 g±1.03 g、(S)12.09 g±1.51g)幼参的麻醉效果。结果显示:当薄荷醇浓度在4%以内时对仿刺参具有良好的麻醉效果,麻醉起效迅速,复苏率为100%;在麻醉体积分数为0.25%、0.5%、1%时,对大规格幼参麻醉时间及复苏时间影响显著,而对中小规格影响不显著;水温11~19℃时,随着温度的升高,仿刺参幼参的麻醉时间从15.62 min±1.31 min缩短到12.17 min±0.21 min,但复苏时间从13.61 min±4.85 min显著增加到28.10 min±7.35 min,不同水温下薄荷醇对仿刺参幼参的麻醉效果差异显著(P0.05),当水温超过21℃时幼参麻醉状态出现异常,不适宜进行麻醉。研究表明:薄荷醇是一种对仿刺参安全有效的麻醉剂,在水温11~21℃进行测量体长的实验中,对体质量20 g以上的幼参适宜的麻醉体积分数为0.5%~1%,对体质量20 g以下的幼参适宜的麻醉体积分数为0.25%~0.5%。  相似文献   

2.
为研究麻醉剂对刺参(Apostichopus japonicus)生长及免疫的影响,选用两种麻醉剂(薄荷醇浓度为0.5%、1%,硫酸镁浓度为0.25mol/L、0.5mol/L)对刺参(体质量15.82±0.79g)麻醉后的特定生长率(SGR)和免疫酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP)]活性进行了研究。试验结果显示:0.5mol/L硫酸镁麻醉组刺参复苏时间长,复苏后棘刺不舒展,附着力弱,活力较差,且生长缓慢;其它麻醉组刺参复苏快棘刺舒展自然,管足附着力强,活力好。1%薄荷醇麻醉组刺参SGR与对照组差异不显著,而0.5%薄荷醇和0.25mol/L硫酸镁麻醉组刺参SGR显著高于对照组(P0.05);除0.5mol/L硫酸镁麻醉组刺参麻醉后免疫酶指标随复苏时间的延长逐渐下降外,其它麻醉组刺参免疫酶指标随复苏时间的延长呈现先降低后升高的变化趋势,复苏至96h时各项免疫指标与对照组无显著差异。试验结果表明,一定剂量的麻醉剂(0.5%、1%薄荷醇和0.25mol/L硫酸镁)不会对刺参生长及免疫机能造成损伤,并可激活机体免疫系统,刺参各项免疫指标在96h内可恢复至正常水平。  相似文献   

3.
在刺参苗种工厂化生产期间,以体积浓度为0.1%~0.5%薄荷醇作为麻醉剂,通过对玻璃海鞘和不同规格参苗进行麻醉剥离实验,研究参苗与敌害生物——玻璃海鞘分离的效果,从而达到高效清除玻璃海鞘的目的。结果表明:薄荷醇溶液对玻璃海鞘无剥离和杀除的作用效果;大规格(0.58 g±0.05 g)刺参选用浓度0.4%~0.5%薄荷醇溶液麻醉20 min,中规格(0.32 g±0.05 g)刺参选用浓度0.2%~0.5%薄荷醇溶液麻醉20min,小规格(0.17 g±0.01 g)刺参选用浓度0.4%~0.5%薄荷醇溶液麻醉10min以及选用浓度0.1%~0.3%薄荷醇溶液麻醉20 min,抖动脱落率均可达90%以上,麻醉剥离效果显著。麻醉剥离后的刺参经1h的恢复即可达到自然状态,营正常活动附着,无排脏或化皮等不良应激反应。因此,采用薄荷醇麻醉剥离参苗可为安全高效清除玻璃海鞘及分苗的生产环节提供省工省力、高效便捷的方法。  相似文献   

4.
MS-222麻醉圆斑星鲽成鱼效果研究   总被引:4,自引:0,他引:4  
不同水温(15℃、20℃和25℃)下、不同质量浓度的MS-222对圆斑星鲽成鱼的麻醉效果不同。根据鱼体在最终麻醉状态和复苏过程中的行为特征,分别把麻醉和复苏过程分为6个和4个时期。15℃、20℃和25℃时MS-222麻醉圆斑星鲽成鱼的有效质量浓度分别为180~300 mg/L、160~280 mg/L和150~230 mg/L。实验结果表明:高水温条件下成鱼进入麻醉状态所需麻醉剂浓度较低;15℃、20℃和25℃温度下在各自的有效质量浓度(180~300 mg/L1、60~280 mg/L和150~230 mg/L)范围内,浓度越高鱼体达到A4期的麻醉时间越短,但复苏时间无明显差异。随着水温的升高,同等麻醉浓度的麻醉剂对圆斑星鲽的麻醉效果逐渐增强。MS-222麻醉圆斑星鲽的效果好,鱼体入麻时间短、复苏快,安全边界宽,是一种理想的鱼用麻醉剂。  相似文献   

5.
本研究建立中国刺参(♂)与日本红刺参(♀)杂交组合,通过对杂交子代的胚胎发育进行观察,详细描述其胚胎及幼体各个阶段的发育时序和形态特征,并比较在幼参培育期间杂交苗与中国刺参自交苗的生长和成活.结果表明,在20~22℃时,杂交子代发育至初耳幼体的时间为受精后24 h 38 min,发育至中耳幼体的时间为72 h 8 min,然后经过167h 8 min(约7d)发育至大耳幼体,到受精后第9天发育至樽形幼体.樽形幼体后期,纤毛环逐渐退化,浮游能力减弱,幼虫由浮游转至底栖生活.在幼参培育期间,受精后第38~51天,平均水温为25.2℃,杂交幼参的体重特定生长率(SGR)为2.58%,而自交幼参的SGR略高,为3.03%;从受精后第51~80天,平均水温达到27.17℃,杂交幼参的生长速度减慢,SGR减小至0.66%,但平均体质量明显增加,到第80天达到(0.34±0.035)g,而自交幼参活动能力减弱,摄食量明显减少,SGR减小至0.08%,生长近于停滞,到第80天平均体质量为(0.19±0.034)g.自交苗和杂交苗的成活率相差不显著,分别为82.2%和73.9%.这表明,在高温条件下杂交苗种比自交苗种生长优势明显.  相似文献   

6.
丁香酚对大西洋鲑麻醉效果的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文首先测定了在14~15℃10min浸浴使不同规格的大西洋鲑进入麻醉状态的丁香酚质量浓度及其半致死浓度(LC50)。结果显示,使均重为99,153,375g以上的大西洋鲑进入麻醉状态的丁香酚质量浓度分别为11,10,9mg/L;10min浸浴LC50的95%置信区间为(56.5,61.6)mg/L。基于上述实验的结果,进一步研究了丁香酚质量浓度、浸浴时间、温度及实验生物规格对麻醉效果的影响。实验表明,提高丁香酚质量浓度和延长浸浴时间能有效延长大西洋鲑的复苏时间,在50mg/L丁香酚质量浓度下浸浴12min,可将其复苏时间延长至14~19min,是运输、转运过程中的理想麻醉条件。本研究对鱼类活体转运及其他处理过程中所需麻醉策略的制定具有重要的参考价值和指导意义。  相似文献   

7.
本文以仿刺参(Apostichopus japonicas Selenka)稚参为实验对象,研究了改性黏土治理有害藻华技术对仿刺参稚参的影响。96h急性毒性试验结果表明,改性黏土对仿刺参稚参的半致死浓度(LC50)为6.01g/L;安全浓度为0.601g/L,高于在现场时的使用浓度0.1g/L;慢性毒性试验显示改性黏土对仿刺参稚参成活率和体重增长率无明显影响;不同浓度的改性黏土添加组中,发现仿刺参稚参的体壁组分(水分、灰分、总糖、总脂和粗蛋白)含量变化不大,改性黏土的加入对减少仿刺参稚参的种内竞争有一定积极作用。另外,针对仿刺参稚参食用包括改性黏土在内的底层颗粒物的现象,考察了不同实验组仿刺参稚参体壁中铝的含量,分析结果显示各实验组与对照组没有显著差异。在此基础上,考察了改性黏土有效去除有害藻华的体系中仿刺参稚参的生长情况,发现与对照组相比,改性黏土有效地去除了有害藻华,还明显降低了仿刺参稚参的死亡率。因此,改性黏土是一种有效治理仿刺参养殖水体有害藻华、对养殖生物无负面影响的藻华治理技术。  相似文献   

8.
采用不同培养基和泥样加热方法,从红岛仿刺参养殖区泥样中分离出27株可培养细菌,对其进行16SrRNA基因序列分析。发现海泥中可培养细菌多分布于γ-变形菌纲(γ-proteobacteria)(占总菌数的71.4%),其中包括假交替单胞菌属(Pseudoalteromonas)、弧菌属(Vibrio)和希瓦氏菌属(Shewanella)等;80℃加热处理20min,海泥中可培养细菌多属于芽孢杆菌属(Bacillus)。人工浸泡感染实验发现,泥样中灿烂弧菌LJ08(Vibrio splendidus)对仿刺参幼参具有致病性。泥样中分离获得的可培养细菌经安全性、抑菌活性和毒性检测,筛选出对灿烂弧菌LJ08有明显抑菌作用的LJ03、LJ04和LJ06并用其进行人工拮抗实验。统计分析显示,添加LJ03和LJ06拮抗组的累计排脏率分别为(36.11±4.81)%和(2.78±4.81)%,与仅添加灿烂弧菌LJ08的阳性对照组差异显著(P0.05)。结果表明,LJ03和LJ06具有很好保护仿刺参幼参的作用,尤其LJ06对仿刺参幼参的排脏保护率达104.7%。作为拮抗灿烂弧菌的潜在有益菌,LJ06在仿刺参养殖中将有良好的应用前景。  相似文献   

9.
为探索丁香酚对真鲷(Pagrosomus major)(♀)×黑鲷(Acanthopagrus schlegelii)(■)杂交子一代的麻醉效果,作者研究了麻醉剂浓度、温度、鱼体规格对鱼体麻醉和复苏的影响,不同麻醉浓度下鱼体呼吸频率的变化,以及麻醉时间和空气中暴露时间对鱼体复苏的影响。结果表明,丁香酚质量浓度为30 mg/L时,对杂交鱼具最佳麻醉效果;温度对丁香酚麻醉效力具有促进作用;麻醉和复苏时间受鱼体规格的影响较小,小规格杂交鱼对丁香酚耐受性稍强;丁香酚质量浓度≤20 mg/L对呼吸频率没有明显影响,质量浓度≥30 mg/L,呼吸频率迅速下降;鱼体在30 mg/L的丁香酚溶液中麻醉时间不宜超过14 min;深度麻醉状态下,空气中暴露9 min以内不会引起鱼死亡。研究将为杂交鱼活体操作和转移运输提供参考。  相似文献   

10.
低温对不同规格刺参幼参生长与耗氧率的影响   总被引:1,自引:0,他引:1  
采用实验生态学方法, 选取(0.50±0.07)g(A)、(2.53±0.42)g(B)、(23.87±2.46)g(C)3 种不同规格的刺参(Apostichopus japonicus Selenta)幼参, 设置6℃(I)、8℃(II)、10℃(III)、13℃(IV)4 个不同温度处理组, 分析比较了低温对工厂...  相似文献   

11.
在6~24℃室内可控温范围内,每3℃为一个梯度,以魁蚶壳长、体质量日增长率以及存活率作为指标,研究了温度对3种规格魁蚶(Scapharca broughtonii)幼贝(小规格壳长6.565 mm±0.225 mm、体质量53.704 mg±5.830 mg;中规格壳长10.114 mm±0.446 mm、体质量181.918 mg±24.797 mg;大规格壳长14.725 mm±0.315 mm、体质量562.416 mg±42.791 mg)生长和存活的影响。结果表明,3种规格魁蚶幼贝在6~24℃水温下均能生长,但在水温6℃及24℃下的壳长和体质量日增长率均较低;水温9℃时3种规格的幼贝的存活率均最高,水温24℃时3种规格幼贝的存活率均最低;水温6~21℃时3种规格幼贝的存活率随着规格的增大而提高,水温24℃时3种规格幼贝的存活率随着规格的增大而降低;小、中、大规格幼贝适宜生长温度分别为10.7~22.3、6.9~23.2、3.7~23.3℃,较适宜生长温度分别为14.3~19.5、15.8~21.6、11.5~21.0℃,最适生长温度分别为18、18、15℃。实验结论为,随着规格增大,魁蚶幼贝适宜生长温度范围扩大,最适生长温度降低,本实验确定了魁蚶幼贝适宜的生长温度,为更有效地开展魁蚶中间培育和底播增殖提供理论支持。  相似文献   

12.
温度对刺参繁殖期消化酶和代谢酶活力的影响   总被引:1,自引:0,他引:1  
为探究刺参(Apostichopus japonicus)繁殖期消化、代谢生理特点,作者以刺参亲参(240 g±15 g)为实验材料,设置了5个温度水平(6、10、14、18、21℃),研究了温度对刺参繁殖期内肠道消化酶和体壁肌肉代谢酶活力的影响。结果发现:温度对亲参繁殖期消化酶、代谢酶活力受培育水温影响显著(P0.05)。其中,胰蛋白酶与淀粉酶活力随水温升高呈先升高后降低的趋势,在10℃时活力最高且达到峰值;脂肪酶活力随着养殖水温升高呈下降趋势,在6℃时活力最高。己糖激酶、丙酮酸激酶、乳酸脱氢酶、苹果酸脱氢酶活力随水温升高出现先增高后降低的趋势,在10℃时达到峰值;而琥珀酸脱氢酶活力随温度升高呈下降趋势。研究表明,10~14℃温度下,亲参消化酶与代谢酶活力均处于较高水平,是理想的亲参室内促熟温度参数。  相似文献   

13.
高温(26℃)培育刺参(Apostichopus japonicus)幼体获得选择群体,生长至1.03 g±1.30 g,与对照组幼参在18、20、22和24℃温度下培育。二者的成活率随着温度升高而降低,而选择组幼参24℃的成活率显著高于对照群体(P0.05)。不同温度下的特定生长率之间没有差异。TRIzol法提取刺参总RNA,获得刺参HSP70片断基因序列,利用实时定量PCR方法检测,选择群体HSP70mRNA的表达量在正常温度和热激条件下都较对照组高,但表达量升高的倍数相近,选择组为1.99倍,对照组为2.07倍。  相似文献   

14.
盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响   总被引:17,自引:1,他引:17  
采用封闭式呼吸器法研究了(15±0.5)℃水温条件下不同盐度(22、27、31.5、36)对四种规格刺参{S[(39.60±8.77)g]、M[(71.80±14.04)g]、L[(128.30±19.69)g]和XL[(196.65±19.81)g]}呼吸和排泄的影响。结果表明,各规格组刺参单位体重耗氧率[Rwr,μg/(g·h)]和排氨率[(Rwe,μg/(g·h)]在盐度22—31.5范围内均随着盐度的升高而降低,当盐度升高至36时,二者都明显升高;各盐度下实验刺参的单位体重耗氧率分别为17.52、16.32、15.49和17.60μg/(g·h),单位体重排氨率分别为1.05、0.88、0.87和0.95μg/(g·h);在同一盐度下,刺参体重越大,其单位个体耗氧率[Rir,μg/(ind·h)]和排氨率[Rie,μg/(ind·h)]越高,二者呈幂函数关系,可用关系式Rir(或Rie)=aWb表示;关系式Rir=aWb中,a值的变动范围为40.6656—81.1900,b值为0.6432—0.8145;而关系式Rie=aWb中,a值的变动范围为2.0947—4.8489,b值为0.6507—0.8072;盐度对刺参O∶N比的影响不显著,各盐度条件下,不同规格的刺参,其O∶N比均在15左右,表明本实验条件下该参代谢所需要的能量主要由脂肪和碳水化合物提供。从呼吸和排泄的角度来看,刺参在其最适温度(15℃)条件下,具有一定的渗透压调节能力,能够适应较广的盐度变化范围(22—36)。  相似文献   

15.
四种重金属对刺参幼参的急性致毒效应   总被引:1,自引:0,他引:1  
采用静水试验法,在水温18.5℃~20℃的条件下,用Cu2 ,Zn2 ,Cd2 和Cr6 四种重金属对刺参幼参进行了单一急性毒性试验。结果表明:Cu2 对刺参幼参的24h,48h,72h和96hLC50分别为0.299,0.176,0.133和0.120mg/L;Zn2 的24h,48h,72h和96hLC50分别为6.700,3.624,2.577和1.951mg/L;Cd2 的24h,48h和72hLC50分别为4.246,2.588和2.137mg/L;Cr6 的24h,48h和72hLC50分别为31.974,7.499和3.808mg/L;Cu2 ,Zn2 ,Cd2 和Cr6 对刺参幼参的安全浓度分别为0.018,0.362,0.259和0.750mg/L。四种重金属对刺参幼参的毒性大小依次为Cu2 >Cd2 >Zn2 >Cr6 。  相似文献   

16.
以刺参幼参为试验对象,在其基础饲料中分别添加0(对照)、0.2、1和5g/kg的微生态制剂作为免疫增强剂,进行28天的养殖实验,研究其对育苗水体中氨氮和亚硝态氮浓度及刺参生长、消化和免疫酶活性的影响。结果表明:28d时,微生态制剂对于刺参养殖水体氨氮和亚硝态氮具有明显的去除效果(P0.05);对刺参生长具有一定促进作用,其中1g/kg组幼参特定生长率最高,但与其他组差异不显著(P0.05);处理组的消化酶(淀粉酶、蛋白酶)与对照组相比均有显著提高(P0.05),免疫酶(碱性磷酸酶、超氧化物歧化酶)与对照组相比也有显著的提高(P0.05)。该免疫增强剂添加量为5g/kg时,对降低育苗水体氨氮浓度和亚硝浓度及增强刺参幼参消化和免疫活力的效果最佳。本研究的结果可为微生态制剂在刺参育苗与养殖中的应用提供参考。  相似文献   

17.
研究了在糊化山药粉全部替代鼠尾藻(Sargassum thunbergii)粉的饲料中添加不同方法处理及不同种类包膜氨基酸的饲料对刺参(Apostichopus japonicus Selenka)幼参生长、消化及免疫指标的影响。试验1,在水温13.0~18.0℃下,将平均体质量为2.27g的刺参饲养在18个50L(50cm×40cm×30cm)的塑料水槽中(15头/槽),投喂添加淀粉包膜的缬氨酸、苏氨酸、亮氨酸等多种氨基酸的饲料。40d的饲养表明,幼参的特殊增重率(RSG)和对饲料蛋白及脂肪的消化率随饲料中添加包膜氨基酸水平的增加而逐渐升高,其中添加包膜氨基酸水平最高组的幼参显著高于未添加包膜氨基酸的对照组(P0.05)。试验2,在水温10.0~19.0℃下,给平均体质量1.55g的刺参投喂在山药粉完全替代鼠尾藻粉的对照饲料(S0)中分别添加0.37%明胶包膜赖氨酸(S1)、0.37%包膜赖氨酸加0.38%包膜蛋氨基酸(S2)和0.37%包膜赖氨酸、0.38%包膜蛋氨酸加0.39%包膜苏基酸(S3)的饲料。60d的饲养表明,幼参的RSG随饲料中添加氨基酸种类的增加而显著增高,S3、S2和S1组刺参的RSG分别比S0组高154.6%、82.1%和57.2%。S3组刺参体腔液超氧化物岐化酶(SOD)和酸性磷酸酶(ACP)活力及对饲料蛋白的消化率(87.26%)均显著高于S0组,说明山药粉替代鼠尾藻,添加明胶包膜赖氨酸、蛋氨酸和苏氨酸可以显著提高刺参生长速度及免疫能力。  相似文献   

18.
在水温15.5-17.0℃的静水条件下,以Hg2+、Cd2和Se4+对刺参幼参进行了单一毒性和联合毒性实验.联合毒性实验采用等毒性配比法,并以Marking相加指数评价联合毒性效应.单一毒性实验结果表明,Hg2+、Cd2+、Se4+对刺参幼参急性毒性的96h半致死质量浓度(LC50)分别为0.0912、4.6433和0.7413mg/L,三者对幼参的毒性大小依次为Hg2+>Se4+>Cd2+.Hg2+、Cd2+、Se4+对刺参幼参的最大容许质量浓度分别为0.0009、0.0464、0.0074mg/L.联合毒性实验结果表明,当Hg2+-Cd2+、Hg2+-Se4+以及Cd2+-Se4+分别以等毒性混合物共存时,它们对刺参幼参在24h、48h、72h和96h的联合毒性均为拮抗作用;当Hg2+-Cd2+-Se2+三者以等毒性混合共存时,它们对刺参幼参在24h、48h、72h和96h的联合毒性仍为拮抗作用.讨论了Hg2+、Cd2+、Se4+对刺参幼参联合毒性效应的机制.  相似文献   

19.
温度和体质量对仿刺参消化道排空时间和排便量的影响   总被引:1,自引:0,他引:1  
实验测定了不同体质量的仿刺参(Apostichopus japonicus (Selenka))在不同温度条件下, 消化道的排空时间、排便量和排便率。按仿刺参体质量大小分设10 g ± 0.5 g、40 g ± 2.0 g 和70 g ± 3.5 g 三个体质量组, 以及6、9、12、15、18、21 ℃共6 个温度梯度。结果表明, 各体质量组仿刺参的排空时间均随温度的升高, 具有先增大后减小的趋势, 10 g ± 0.5 g 和40 g ± 2.0 g 组分别在12 和15 ℃时排空时间最长, 且在9~15℃时差异不显著(P>0.05), 但显著大于其他温度组(P<0.05), 70 g ± 3.5 g 组仿刺参在12 ℃时的排空时间达各组最大值36.4 h。在6、18 和21 ℃温度条件下, 仿刺参的排空时间随体质量的增大总体呈增长趋势, 各温度组仿刺参的排便量均随体质量的增大而增加。仿刺参的个体排便率随体质量的增加而增大, 而单位体质量排便率多数随体质量增大而减小。10 g ± 0.5 g 和40 g ± 2.0 g 组的排便率均在6 ℃时最高, 70 g ± 3.5 g 组在9 ℃时达最高, 然后降低。温度和体质量对仿刺参排空时间和排便量均有极显著的影响(P<0.01), 二者的交互作用对排空时间的影响也是极为显著的(P<0.01),但对排便量的影响不显著(P>0.05)。  相似文献   

20.
陈相堂  赵斌  李成林  韩莎  胡炜 《海洋科学》2019,43(6):95-101
本研究对紫刺参胚胎和幼体发育过程进行了显微观测,比较分析了其幼体早期生长情况与体色形成过程。结果表明:(1)在水温21.0±0.2℃条件下,紫刺参受精卵在受精10~15min后释放第一极体,5h 30min~6h 30min进入囊胚期, 18~20h发育成原肠胚; 30~34h进入耳状幼体阶段, 8~10d变态发育为樽形幼体, 12~14d发育成稚参;紫刺参胚胎和幼体发育时序与普通刺参无显著差异。(2)紫刺参早期发育中的樽形幼体发生率和附着变态率分别为58.4±4.7%和45.1±2.7%,高于普通刺参。(3)紫刺参浮游阶段后期随日龄增长表现出较普通刺参发育更快的优势,在日龄6~7d表现出显著差异(P0.05)。(4)紫刺参稚参在日龄35d前后自背部开始着色,50d~60d腹部开始着色,110d体表紫色转变近乎成参体色,完成变色过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号