首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
于2013年10~11月和2014年5~6月调查测定了东海陆架区海水中二甲亚砜(DMSO)的浓度,探讨了溶解态二甲亚砜(DMSOd)和颗粒态二甲亚砜(DMSOp)的水平和垂直分布、季节变化及其影响因素;此外,对沉积物间隙水中DMSOd的浓度以及表层海水中不同粒径的DMSOp和叶绿素a(Chl a)进行了分析。结果显示,秋季和夏初表层海水中DMSOd和DMSOp的平均浓度分别为(10.52±7.16)、(8.99±6.34)nmol·L^-1和(17.51±9.90)、(16.96±10.73)nmol·L^-1,存在明显的季节差异。秋季表层海水中DMSOp的高值区出现在Chl a较低的远岸海域,而夏初表层海水中DMSO的浓度从近岸到远海逐渐降低。间隙水中DMSOd的浓度明显高于底层海水中DMSOd的浓度,说明沉积物中存在DMSO的生产释放,可能是底层海水DMSO的重要来源。此外,粒径分布结果表明较大微型浮游植物(5~20μm)是秋季东海表层海水中DMSOp的主要贡献者。  相似文献   

2.
基于中国第7次北极科学考察白令海现场调查资料与数据,分析了2016年夏季白令海海水颗粒态(DMSOp)和溶解态二甲亚砜(DMSOd)浓度的空间变化特征及其影响因素。研究表明,夏季白令海二甲亚砜(DMSO)浓度高于全球多数大洋和近岸海域。夏季白令海DMSOd和DMSOp浓度空间变化相似。表层海水DMSOp浓度为6.47~169.40 nmol/L,平均值为(79.62±56.10) nmol/L;DMSOd浓度的变化范围是20.07~153.70 nmol/L,平均值为(72.67±39.20) nmol/L。平面分布上,白令海表层DMSO浓度由海盆区、中外陆架区至内陆架区依次降低;垂直分布上由表至底随深度增加而降低,表层DMSOd和DMSOp浓度高于55 nmol/L,底层低于25 nmol/L。海盆区DMSOd主要源于DMS氧化和浮游生物直接合成的DMSOp,海盆区深层水团DMSOd浓度主要受控于温度和盐度。中外陆架区表层暖水团DMSO浓度主要受控于温度,陆架冷水团DMSO浓度则受盐度影响较大。内陆架区陆架水团DMSOp浓度和阿拉斯加沿岸水团DMSOd浓度分别受温度和DMS光化学氧化影响。  相似文献   

3.
黄、渤海二甲基硫化物的浓度分布与迁移转化速率研究   总被引:2,自引:1,他引:1  
于2015年8-9月对黄、渤海海域进行现场调查,研究了海水中二甲基硫(DMS)、β-二甲巯基丙酸内盐(DMSP)、二甲亚砜(DMSO)的浓度分布、相互关系及影响因素,测定了DMS的生物生产与消耗、光化学氧化和海-气扩散速率,对DMS的迁移转化速率进行综合评价。结果表明:表层海水中DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)浓度的平均值分别为(6.12±3.01)nmol/L、(6.03±3.45)nmol/L、(19.47±9.15)nmol/L、(16.85±8.34)nmol/L和(14.37±7.47)nmol/L,整体呈现近岸高远海低,表层高底层低的趋势。DMS、DMSPd和DMSOp浓度与叶绿素(Chl a)浓度存在显著的相关性。表层海水中DMS光氧化速率顺序为:kUVA > kUVB > k可见,其中UVA波段占光氧化的70.8%。夏季黄、渤海微生物消耗、光氧化及海-气扩散对DMS去除的贡献率分别为32.4%、34.5%和33.1%,表明3种去除途径作用相当。黄、渤海DMS海-气通量变化范围为0.79~48.45 μmol/(m2·d),平均值为(11.87±11.35)μmol/(m2·d)。  相似文献   

4.
于2012年7—9月现场测定了北极挪威海和格陵兰海区域海水二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP,分溶解态DMSPd和颗粒态DMSPp)的含量,研究了其空间分布格局及其影响因素,探讨了表层海水DMS的生物周转和去除途径。结果表明,表层海水DMS、DMSPd和DMSPp的平均浓度分别为5.36nmol/L、15.63nmol/L和96.73nmol/L,受挪威海流和北极深层水影响,表层海水二甲基硫化物浓度呈现出由低纬度向高纬度海域递减的趋势。DMSPd和DMSPp浓度与Chl a浓度均有显著的相关性,说明浮游植物生物量是影响挪威海和格陵兰海二甲基硫化物生产的重要因素。表层海水DMS生物生产和消费速率平均值分别为18.19nmol/(L·d)、15.67nmol/(L·d)。DMS微生物周转时间变化范围为0.03~1.80d,平均值为0.49d,DMS海-气周转时间是微生物消费时间的90倍,说明夏季挪威海和格陵兰海表层海水中DMS微生物消费过程是比海-气扩散更具优势的去除机制。  相似文献   

5.
于2013年10~11月现场测定了东海中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP,分为溶解态DMSPd和颗粒态DMSPp)的含量,研究其水平分布特征、DMSPp的粒径分布及DMSPd的降解速率,并对DMS的海-气交换通量进行了探讨。研究结果表明,表层海水中DMS、DMSPd和DMSPp的浓度平均值分别为(4.84±0.40)、(5.84±0.93)和(13.01±0.52)nmol·L-1。海水中DMSPd的降解速率在2.59~16.36nmol·L-1·d-1之间,平均值为(6.78±0.84)nmol·L-1·d-1。调查海域范围内,小型浮游植物(20μm)是DMSPp和叶绿素a(Chl a)重要贡献者。此外,秋季东海表层海水DMS的海-气交换通量为0.66~31.73μmol·m-2·d-1,平均值为(11.63±0.71)μmol·m-2·d-1。  相似文献   

6.
A chemoreduction-purge-and-trap gas chromatographic method has been developed for the determination of trace dimethylsulfoxide (DMSO) in seawater. In the analysis procedure, DMSO was first reduced to dimethylsufide (DMS) by sodium borohydride and then the produced DMS was analyzed using the purge-and-trap technique coupled with gas chromatographic separation and flame photometric detection. Under the optimum conditions, 97% DMSO was reduced in the standard solution samples with a standard deviation of 5% (n=5). The detection limit of DMSO was 2.7 pmol of sulfur, corresponding to a concentration of 0.75 nmol/L for a 40 ml sample. This method was applied to determine the dissolved DMSO (DMSOd) and particulate DMSO (DMSOp) concentrations in the surface seawater of the Jiaozhou Bay, and the results showed that the DMSOd and DMSOp concentrations varied from 16.8 to 921.1 nmol/L (mean:165.2 nmol/L) and from 8.0 to 162.4 nmol/L (mean:57.7 nmol/L), respectively. The high concentrations of DMSOp were generally found in productive regions. Consequently, a significant correlation was found between the concentrations of DMSOp and chlorophyll a, suggesting that phytoplankton biomass might play an important role in controlling the distribution of DMSOp in the bay. Moreover, in the study area, the concentrations of DMSOd were significantly correlated with the levels of DMS, implying that the production of DMSOd is mainly via photochemical and biological oxidation of DMS.  相似文献   

7.
以胶州湾及青岛近海为研究区域,利用吹扫-捕集气相色谱法研究了二甲基硫(DMS)和二甲巯基丙酸(DMSP,分为溶解态DMSPd和颗粒态DMSPp)在微表层与次表层中的浓度以及它们在微表层中的富集行为。结果表明,DMS、DMSPd和DMSPp在微表层中的浓度高于次表层,它们在微表层中的富集因子分别为1.17、1.84和1.51。研究发现,DMS及DMSPp浓度与叶绿素a(Chl-a)浓度有很好的相关性,但它们的周日变化与Chl-a并不完全同步。DMS/Chl-a和DMSPp/Chl-a的比值在次表层和微表层分别为4.35、13.47mmol/g和3.99、15.88mmol/g。胶州湾及青岛近海生态环境受人为活动干扰严重,使本海域DMS含量较高,从而贡献出较大的DMS海-气通量。  相似文献   

8.
2009年12月对黄海进行了大面调查,研究了冬季黄海二甲基硫(DMS)和二甲巯基丙酸内盐(DMSP)的浓度分布、DMS海-气通量及其影响因素。调查结果表明,DMS、溶解态DMSP(DMSPd)和颗粒态DMSP(DMSPp)的浓度分别为0.95(0.07~3.30)、1.18(0.22~3.54)和5.01(1.63~12.33)nmol·L-1。总体上DMS和DMSP的水平分布与叶绿素a(Chl-a)相类似,呈现近岸高、远海低的趋势。35°N断面的垂直调查结果显示,在水深小于50m的水体中Chl-a、DMS和DMSP浓度较高且分布相对均匀。相关性分析发现,仅DMSPp与Chl-a之间存在一定的相关性。利用Nightingale公式(N2000)估算了冬季黄海DMS的海-气通量,其平均值为2.16μmol·m-2·d-1。此外,根据大气气溶胶中甲基磺酸盐(MSA)和非海盐硫酸盐(nss-SO2-4)的浓度和比例,估算出生源硫释放对气溶胶中nss-SO2-4的贡献比例仅为2.85%,表明冬季黄海大气nss-SO2-4主要受人为活动排放控制。  相似文献   

9.
于2011年6月12日至28日采集黄海表层海水进行甲板培养实验,研究了不同营养盐添加条件下浮游植物生长释放二甲亚砜(DMSO)的动态变化规律。实验结果表明,不同浓度及不同氮、磷、硅比值的营养盐的加入,均会导致培养体系中叶绿素a(Chl-a)、溶解态和颗粒态DMSO(DMSOd和DMSOp)含量的增加。培养实验过程中,DMSOp的浓度变化趋势与Chl-a相一致,其中在氮/磷比值最高(32∶1)的培养体系内DMSOp浓度最大,而DMSOd的浓度变化有一定的波动。此外,N、P营养盐相对于Si对DMSO含量的影响更为显著,而微量营养元素Fe可能并不是影响黄海浮游植物生物量的1个重要因子。  相似文献   

10.
采集了中国东海(2009-12~2010-01)35个站位的海水样品,其中包括6个站位的垂直断面。用TPTZ方法测定了溶解态的单糖(MCHO)、多糖(PCHO)和总糖(TCHO)的浓度,对其水平分布和PN断面分布进行了研究。结果表明,受到长江冲淡水和黑潮水的影响,表层海水中MCHO、PCHO和TCHO浓度的水平分布表现出由近岸向外海递减的分布趋势。PN断面由于受冬季东北季风的影响,水体混合强烈,使得MCHO、PCHO和TCHO浓度在垂直方向上分层无明显规律。对长江口外3个断面海水中TCHO浓度与环境因子做了相关性研究。结果表明,TCHO浓度与盐度和温度呈显著的线性负相关,与Chl-a浓度呈线性正相关。  相似文献   

11.
Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentrations of DMSOd and DMSOp in the surface water were 20.6(5.13–73.8)and 8.90(3.75–29.6)nmol/L in spring,and 13.4(4.17–42.7)and 8.18(3.44–22.6)nmol/L in autumn,respectively.Both DMSOd and DMSOp concentrations revealed similar seasonal changes with higher values occurring in spring,mainly because of the higher phytoplankton biomass observed in spring.Moreover,the ratios of DMSOp/chlorophyll a also exhibited an apparent seasonal change with higher values in autumn(35.7 mmol/g)and lower values in spring(23.4 mmol/g),thereby corresponding with the seasonal variation in the proportion of DMSO producers in the phytoplankton community between spring and autumn.In addition,DMSOd and DMSOp concentrations in the surface seawater revealed obvious diurnal variations with the maxima appearing in the afternoon.  相似文献   

12.
Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolved and particulate DMSP(DMSPd and DMSPp) in the surface waters in spring are 1.69(0.48–4.92), 3.18(0.68–6.75)and 15.81(2.82–52.33) nmol/L, respectively, and those in autumn are 2.80(1.33–5.10), 5.45(2.19–11.30) and 30.63(6.24–137.87) nmol/L. On the whole, the distributions of DMS and DMSP in spring are completely different from those in autumn. In the central part of the SYS, the concentrations of DMS and DMSP in spring are obviously higher than those in autumn, but the opposite situation is found on the south of 34°N, which can be attributed to the differences in nutrients and phytoplankton biomass and composition between spring and autumn. Besides,the seasonal variations of water column stability and the Changjiang diluted water also have significant impact on the distributions of DMS and DMSP in spring and autumn on the south of 34°N. DMS and DMSPp concentrations coincide well with chlorophyll a(Chl a) levels in the spring cruise, suggesting that phytoplankton biomass may play an important role in controlling the distributions of DMS and DMSPp in the study area. Annual DMS emission rates range from 0.015 to 0.033 Tg/a(calculated by S), respectively, using the equations of Liss and Merlivat(1986) and Wanninkhof(1992). This result implies a significant relative contribution of the SYS to the global oceanic DMS fluxes.  相似文献   

13.
Spatial variations in dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) were surveyed in the surface microlayer and in the subsurface waters of the low productivity South China Sea in May 2005. Overall, average subsurface water concentrations of DMS and DMSP of dissolved (DMSPd) and particulate (DMSPp) fractions were 1.74 (1.00-2.50), 3.92 (2.21-6.54) and 6.06 (3.40-8.68) nM, respectively. No enrichment in DMS and DMSPp was observed in the microlayer. In contrast, the microlayer showed a DMSPd enrichment, with an average enrichment factor (EF, defined as the ratio of the microlayer concentration to subsurface water concentration) of 1.40. In the study area, none of the sulfur components were correlated with chlorophyll a. An important finding in this study was that DMS, DMSP and chlorophyll a concentrations in the surface microlayer were respectively correlated with those in the subsurface water, suggesting a close linkage between these two water bodies. The ratios of DMS:Chl-a and DMSPp:Chl-a showed a gradually increasing trend from North to South. This might be due to changes in the proportion of DMSP producers in the phytoplankton community with the increased surface seawater temperature. A clear diurnal variation in the DMS and DMSP concentrations was observed at an anchor station with the highest concentrations appearing during the day and the lowest concentrations during the night. The higher DMS and DMSP concentrations during daytime might be attributed to the light-induced increase in both algal synthesis and exudation of DMSP and biological production of DMS. The mean flux of DMS from the investigated area to the atmosphere was estimated to be 2.06 micromo lm(-2)d(-1). This low DMS emission flux, together with the low DMS surface concentrations was attributed to the low productivity in this sea.  相似文献   

14.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the seasurface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m2·d), which highlights the effects of human impacts on DMS emission.  相似文献   

15.
Sixteen surface microlayer samples and corresponding subsurface water samples were collected in the western North Atlantic during April–May 2003 to study the distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) and the factors influencing them. In the surface microlayer, high concentrations of DMS appeared mostly in the samples containing high levels of chlorophyll a, and a significant correlation was found between DMS and chlorophyll a concentrations. In addition, microlayer DMS concentrations were correlated with microlayer DMSPd (dissolved) concentrations. DMSPd was found to be enriched in the microlayer with an average enrichment factor (EF) of 5.19. However, no microlayer enrichment of DMS was found for most samples collected. Interestingly, the DMS production rates in the microlayer were much higher than those in the subsurface water. Enhanced DMS production in the microlayer was likely due to the higher concentrations of DMSPd in the microlayer. A consistent pattern was observed in this study in which the concentrations of DMS, DMSPd, DMSPp (particulate) and chlorophyll a in the microlayer were closely related to their corresponding subsurface water concentrations, suggesting that these constituents in the microlayer were directly dependent on the transport from the bulk liquid below. Enhanced DMS production in the microlayer further reinforces the conclusion that the surface microlayer has greater biological activity relative to the underlying water.  相似文献   

16.
本研究首次探究了西太平洋雅浦海沟北段从表层到超深渊海水中甲烷(CH4)及二甲基硫(DMS)的前体物质二甲基巯基丙酸内盐(DMSP)的浓度变化情况。结果表明:雅浦海沟海水甲烷浓度变化范围为1.49~3.87 nmol/L。其上层海水甲烷平均浓度最高,有明显的次表层极大现象。雅浦海沟氧最小层海水的甲烷平均浓度最低;在500~1 000 m中层水中甲烷浓度有一定程度的增大,1 000 m以下至底层甲烷浓度继续升高。研究海区溶解态DMSP(DMSPd)和总DMSP(DMSPt)平均浓度的垂直变化随深度呈先增大后减小趋势,颗粒态DMSP(DMSPp)的平均浓度随深度呈波动式变化,在中层达到最大。雅浦海沟CH4和DMSP浓度垂直变化受浮游生物、微生物、光照、温度、压力、大洋环流等的复杂影响。在真光层海水中,CH4浓度与DMSPd、DMSPp和DMSPt浓度表现为负相关关系,在200 m至底层海水中,CH4浓度与DMSPd、DMSPp和DMSPt浓度表现为正相关关系,显示光照条件是造成雅浦海沟不同深度海水CH4和DMSP浓度相关性差异的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号