首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
根据1842—2004年海图资料分析发现,南汇边滩存在近百年尺度的强烈冲刷—淤积旋回。长江主泓走南港或北港是造成冲刷期"北滩、东滩淤积,南滩、过渡带冲刷"或淤积期冲淤态势反相的主要原因;冲刷期内风暴强度和频数明显多于淤积期,造成冲刷期滩面叠置记忆的是暴风浪成因的"高滩冲刷、低滩淤积"的冲淤态势,而淤积期保存的是弱风浪成因的"高滩淤积、低滩冲刷"叠置增强的剖面特征。尽管三角洲整体冲淤态势的转变主要受流域来沙量的控制,但不同岸段受河口河势分水分沙作用、潮流和波浪等共同作用,明显存在此冲彼淤、冲淤动态调整等特征。已有的入海泥沙含量阈值研究以点代面或以局部代整体,这是造成阈值估算偏高的主要原因。2003年三峡水库开始蓄水后平均年输沙量154 Mt/a已低于低阈值184 Mt/a,但三角洲尚未如预测那样发生由净淤积向净侵蚀的转变。已有的河口水文观察资料显示,水体含沙量也未发生明显下降,这可能是潮控型三角洲潮流对泥沙在河口的再分配起主导作用,并可能由此延长三角洲冲淤转变对入海泥沙量减少的滞后。今后需进一步加强潮控型河口复杂过程的综合研究,提高对泥沙含量阈值估算和应对可能面临的海岸侵蚀及其相关的环境地质灾害的能力。  相似文献   

2.
3.
To evaluate the controlling factors for coastline change of the Changjiang(Yangtze River) Estuary since 1974,we extracted the mean high tide line from multi-temporal remote sensing images that span from 1974 to 2014 at 2-year intervals.We chose 42 scenes to constrain the changing pattern of the Changjiang Estuary coastline,and implemented GIS technology to analyze the area change of the Changjiang(Yangtze) Subaerial Delta.Runoff,sediment discharge and coastal engineering were withal considered in the analysis of the coastline changes.The coastline has transgressed seaward since 1974,and a part of it presents inter-annual variations.The area of the Changjiang Subaerial Delta increased by 871 km2,with a net accretion rate of 21.8 km2/a.Based on the change of sediment discharge due to the major projects in the Changjiang River Basin,we divided the changing pattern of the coastline into three stages:the slow accretion stage(1974–1986),the moderate accretion stage(1987–2002),and the rapid accretion stage(2003–2014).Liner regression analysis illustrated that there is a significantly positive correlation between the area changes and sediment discharge in the Chongming Eastern Shoal and Jiuduansha.This suggested that sediment load has a fundamental effect on the evolution of the Changjiang Estuary.Construction of Deep Waterway in the North Passage of the Changjiang River(1998–2010) led to a rapid accretion in the Hengsha Eastern Shoal and Jiuduansha by influencing the hydrodynamics in North Passage.Coastal engineering such as reclamation and harbor construction can also change the morphology of the Changjiang Estuary.We defined a contribution rate of area change to assess the impact of reclamation on the evolution of Changjiang Estuary.It turned out that more than 45.3% of area increment of the Changjiang Estuary was attributed to reclamation.  相似文献   

4.
受流域来水来沙条件变化及河口大型工程建设的综合影响,长江口呈现新的冲淤格局,为预测未来演变趋势,本研究基于前期研究中建立的长江口年代际冲淤演变预测模型(Delft3D),未来情景考虑不同来沙量条件和相对海平面上升速率。预测结果表明,到2035年长江口整体以冲刷为主,口内河段主槽和浅滩边缘冲刷较明显,仅高滩局部淤积;到2050年口内河段保持净冲刷状态,拦门沙地区在现状来沙量条件下略有淤积,但在极端低来沙量条件下转变为净冲刷状态,海平面上升对拦门沙地区冲刷具有一定抵消作用,但不会使冲淤状态产生本质改变。本研究分析认为,长江口局部区域未来冲淤趋势可能对河口综合治理与保护产生不利影响,针对新格局条件下的滩槽河势稳定、重要洲滩保护、重大工程安全评估、冲刷致灾研判以及海堤防护标准再评估等方面提出了对策建议,可为新时期长江口综合治理与可持续发展提供参考。  相似文献   

5.
黄河三角洲孤东近岸冲淤演变及其影响因素   总被引:1,自引:0,他引:1  
为更好地了解近40年来孤东近岸的演变过程,以研究区剖面水深地形、Landsat影像和利津站水沙数据为数据源,采用遥感技术及数理统计法对研究区域岸线及面积变化进行监测计算,并分析1976—1986年、1986—1996年、1996—2002年、2002—2014年4个不同阶段的冲淤演变及影响因素。结果表明:(1)孤东近岸经历"强淤积-冲淤平衡-侵蚀-强侵蚀"4个阶段。孤东近岸海域由淤积向侵蚀转变始于1996年,且在2002—2014年间侵蚀最为严重,大部分近岸海域蚀深达到6~8 m,侵蚀最大深度超过8 m;(2)等深线变化时空差异明显,蚀退最先出现在北侧,且近岸5 m水深区域内冲淤变化较水深10 m内敏感;(3)研究区近岸侵蚀,离岸淤积,剖面冲淤平衡位置由CS19剖面的11 m水深变化到CS21剖面的5m水深;(4)黄河入海水沙的减少、河口人工改汊、孤东大堤建设和海洋动力作用都对孤东近岸的冲淤演变产生影响,维持研究区冲淤平衡的年均来沙阈值为3.78亿t/a。通过此来进一步探究孤东近岸演变进程,为孤东近岸防护提供科学指导。  相似文献   

6.
This study investigates species community patterns and sediment relationships of benthic macrofauna off the Rhone river delta. Along a WE transect, changes in diversity, density, biomass and trophic structure were coupled with the mean extension of the river dilution plume. Species number and diversity were at a minimum off the river mouth, below the area of the minimum surface salinity. Density decreased by a factor 2 and biomass by a factor 5 from the fluvial to the marine system. These features are due to high overload of terrestrial organic matter in the river prodelta as evidenced by the carbon isotopic signature of surface sediment and by pigment content. On the basis of a non-metric MDS analysis and of Dufrêne and Legendre method (1997), groups of stations and characteristic species associated were identified. These species, mainly small capitellids, spionids, lumbrinerids and sternaspids, correspond to a successional dynamic in response to changes in sedimentation conditions, mainly in organic matter quality of the surface sediment. The succession observed in space was similar to described in macrotidal estuaries and off other deltaic systems all over the world and to that observed in time following the Rhone river severe flood events. Results suggest that organic matter quality is an important factor with regard to benthic macrofauna successions and recovery mechanisms following disturbances. The differences observed between the Rhone deltaic system and the general model of relations between shelf processes and discharge of large rivers are attributed to a more regular supply of organic material from terrestrial origin on the Rhone continental shelf.  相似文献   

7.
根据1951~2000年大通站实测水文资料和长江口地形图,分析了长江入海泥沙量的变化趋势及其对水下三角洲冲淤演变的影响.从20世纪60年代末开始,长江入海泥沙量出现减少趋势,90年代输沙量相对于60年代下降了1/3.流域大量修建水库是导致河流入海泥沙减少的根本原因.在此背景下,长江口门外的水下三角洲淤积速率从1958~1978年时段的55mm/a下降为1978~1998年时段的11mm/a.考虑三峡工程等多种人类活动的可能影响,估计本世纪上半叶和下半叶的河流入海泥沙量将分别减少约60%和40%.尝试建立了三角洲冲淤对河流供沙量响应的概念公式,并据此对本世纪长江三角洲的演变趋势做了初步预测:三角洲的总体淤涨速率将急剧下降,口门外水下三角洲将出现严重侵蚀.  相似文献   

8.
在全球气候变化和人类活动影响加剧的背景下,作为河口海岸重要子系统的三角洲正在发生快速变化。长江三角洲地处长江入东海交汇处,是中国最重要的经济核心区之一,对邻近区域乃至整个长江经济带经济社会发展都起着重要作用。由于全球变暖、海面上升和强烈人类活动引发了三角洲系统状态转换,因此以往基于恒定系统状态而获得的有关长江三角洲的认识已不能满足未来需求,迫切需要对未来海面变化、极端事件、流域与河口工程影响下的三角洲物质循环条件、物理过程、地貌冲淤演化、源-汇格局调整等科学问题进行深入研究。在三角洲系统行为、未来演化趋势的预测能力建设中,应重视从海面到海底的综合立体观测系统的发展,以获取关键数据;基于三角洲系统的时、空演化特征,建立三角洲本征态和衍生态的谱系理论。未来需针对系统状态转换而调整原先的经济社会发展模式,以便保护自然资源、重建生态系统,更好地支撑长江经济带发展,重绘长江三角洲发展蓝图。  相似文献   

9.
In the tidally influenced Fraser River, Canada, palynological and carbon isotope (δ13Corg) signatures of channel-margin sediments are compared to environmental parameters (e.g., grain size, water salinity) to establish how the signatures vary across the tidal–fluvial transition. Palynological assemblages in the Fraser River are dominated by tree pollen, which constitutes between 85% and 95% of all assemblages. Dinocyst abundances do not exceed 2% of the total palynological assemblage, and the number and diversity of dinocysts gradually decreases landward. The calculated landward limit for dinocysts is at approximately 83 river km, which is relatively close to the upstream limit of the tidal backwater (at ∼100 km). δ13Corg values show minimal variability across the tidal–fluvial transition, and the average value is approximately −26‰. The δ13Corg signature of river sediments indicates a dominance of terrestrially sourced organic matter regardless of brackish-water and tidal influence on sediment deposition.Six palynological and geochemical trends are identified as relevant to the rock record. 1) In deltaic environments, palynological and geochemical characteristics are less useful than sedimentological and ichnological characteristics for establishing depositional conditions. 2) In marginal-marine settings, low abundances and low species diversities of dinocysts, coupled with a “terrestrial” geochemical signature (δ13Corg < −25‰) do not necessarily indicate deposition in a terrestrial environment. 3) Dinocyst abundances above 1% of the total palynomorph population can indicate a significant marine influence on sediment deposition. 4) Mud beds, preferably bioturbated, should be preferentially sampled in order to maximize palynomorph recovery. 5) Marine palynomorphs can occur, albeit in very low concentrations, to the landward limit of the tidal–backwater zone. 6) Palynological and geochemical data should be compared across the paleo-depositional environment in order to establish general trends and remove local variations caused by biases such as grain size.  相似文献   

10.
现代黄河三角洲钓口叶瓣体沉积相及其沉积动力环境特征   总被引:1,自引:0,他引:1  
The Huanghe River captures the Diaokou River in 1964 and forms a deltaic lobe in the subsequent 12 a. The progradational process of the Diaokou lobe is in associated with complicated evolution of riverine sheet flooding,merging, and swinging. On the basis of 11 borehole cores and 210 km high resolution seismic reflection data set,the sedimentary sequence and dynamic environment of the Diaokou lobe(one subdelta lobe of the modern Huanghe River Delta) are studied. The stratigraphy of the lobe is characterized by an upward-coarsening ternary structure and forms a progradational deltaic clinoform. Totally six seismic surfaces are identifiable in seismic profiles, bounded six seismic units(SUs). These SUs correspond to six depositional units(DUs) in the borehole cores, and among them, SUs 4–6(DUs D to F) consist of the modern Diaokou lobe. Lithological and seismic evidences indicate that the delta plain part of the Diaokou lobe is comprised primarily by fluvial lag sediments together with sediments from sidebanks, overbanks, fluvial flood plains and levees, while the delta front part is a combination of river mouth bar sands(majority) and distal bar and deltaic margin sediments(minority). As a result of the high sedimentation rate and weak hydrodynamic regime in the Huanghe River Delta, the sediments in the delta front are dominated by fine-grained materials. The grain size analysis indicates the Huanghe River hyperpycnal-concentrated flow shows the suspension, transportation and sedimentation characteristics of gravity flow, and the sediment transportation is primarily dominated by graded suspension, while uniform suspension and hydrostatic suspension are also observed in places. The strength of the hydrodynamic regime weakens gradually offshore from riverbed, river mouth bar, sidebank, distal bar subfacies to delta lateral margin and flooding plain subfacies.  相似文献   

11.
Flow-parallel linear ridge–runnel (RR) bedforms composed of mainly cohesive sediments have been investigated at an intertidal site located at Hills Flats in the Severn Estuary, UK. It is argued that the sequences of sand–mud laminae in the ridge sediments indicate strongly that RR are depositional bedforms. Faint RR topography scoured in the underlying soft bedrock and parallel rows of coarser particle now found at the base of ridges are evidence of secondary vortices that may have provided a catalyst for mud ridge growth. Bed shear stress remains below the erosion threshold for all but the most recent and weak surficial mud deposits which are removed by evorsion [mechanical erosion by turbulent flows that may also carry sand and/or gravel] during Spring tidal flow ca. 60 cm/s. Differences in flow characteristics between ridges and runnel are minor. Corrasion [to erode or be eroded by abrasion] by sparse coarse sediment largely prevents net deposition in the runnels. Over time a slight imbalance between mud deposition and erosion rates allows slow growth of the ridges suggesting that these mudflats may be especially sensitive to slight changes in the local hydrodynamic regime and/or sediment supply.  相似文献   

12.
South of Hangzhou Bay, Zhejiang Province, exhibits an embayed muddy coastline, with the muddy beaches of embayments extending continuously seaward.The source of sediments on this coast presents an interesting problem to marine geologists and geomorphologists .The total annual load of sediments from the rivers of Zhejiang is only 12×106t.These materials affect only the area near the river mouths. The paper showed that the sediment along the coast of Zhejiang mainly comes from the Changjiang Estuary through analysing the time and space variations of suspended sediment, the features of sediment and the sedimentary transport.The Changjiang River is the largest river system in China, its sediment to the sea amounting to 468×106t. The sediment during summer transports mainly eastward, and is affected by the water body with high temperature, salinity and transparency; the winter season is the period with high sediment concentration. The sediment of the Changjiang Estuary transports together with the longshor  相似文献   

13.
2000年8月长江口外海区冲淡水和羽状锋的观测   总被引:25,自引:2,他引:25       下载免费PDF全文
采用CTD、多参数环境监测系统 YSI等仪器设备 ,于 2 0 0 0年 8月在长江口外海区对长江冲淡水结构、羽状锋等进行了现场观测。 2 0 0 0年 8月长江冲淡水出口门后 ,朝东北偏北流动 ,而当年 8月为长江径流量偏小的月份。通过动力分析指出了近口门段长江冲淡水分布类型与径流量的关系。长江冲淡水主流在近口门附近朝东北偏北扩展后 ,在科氏力作用下朝东南扩展 ,在转向区域为沿水下河谷北上的高盐台湾暖流水。高盐的台湾暖流水和长江冲淡水混合 ,生成口外羽状锋 ,强度大 ,阻挡了长江冲淡水向东扩展 ,并使冲淡水在当年径流量偏小情况下朝东北偏北运动。部分台湾暖流水在中下层能穿越长江口外而向北流动。羽状锋主要存在于长江口外 1 2 2 .6°E附近的 1 5m水层之上。在浙江沿岸、长江口外水下低谷西侧、吕泗近岸存在着上升流现象  相似文献   

14.
The San Juan River has one of the most extensive and best developed deltas on the Pacific coast of South America, measuring 800 km2. The river drainage basin measures 16?465 km2 and is located in one of the areas with the highest precipitation in the western hemisphere. The annual rainfall varies from 7000 to 11?000 mm, and as a result the San Juan River has the highest water discharge (2550 m3 s−1), sediment load (16×106 t yr−1), and basin-wide sediment yield (1150 t km−2 yr−1) on the west coast of South America. The San Juan delta growth began approximately 5000 years BP. The structure of the delta is determined by the interactions between fluvial deposition and the effect of 1.7-m significant swells, mostly from the SW, and strong tidal currents. Analysis of delta progradation indicates that during 1848-1992 the morphology of the delta was characterized by beach ridge accretion, spit growth, narrowing of inlets, and a general advance of the delta shoreline. During the past decade processes such as rapid erosion of the delta shore, narrowing of barrier islands, and breaching of a new inlet, are the result of a long-term relative sea-level rise of 2.6 mm yr−1 due to tectonically induced subsidence coupled with a eustatic rise of sea-level. The delta also experiences strong oceanographic manifestations associated with the El Niño-La Niña cycle, causing regional sea-level elevation of 20-30 cm during El Niño years. Recent coastal subsidence in the delta is evidenced by: (1) increased occurrence of non-storm washover events; (2) increased erosion of barrier islands with average loss of 11 m yr−1 during 1993-1997; and (3) a relative sea-level rise of 3.4 mm yr−1 during 1991-1999. The morphology and recent evolution of the San Juan delta are unique when compared to other deltas of South America because of the singular combination of extreme climatic, geologic, and oceanographic conditions under which the delta has formed and the absence of human-induced impact in the drainage basin.  相似文献   

15.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

16.
Water and sediment samples were collected at Datong from June 1998 to March 1999 to examine seasonal changes in the transports of nitrogen (N) and phosphorus (P) from the Changjiang River (Yangtze River) to the East China Sea (ECS). Dissolved inorganic nitrogen (DIN; dominated by nitrate) concentration exhibited small seasonality, and DIN flux was largely controlled by water discharge. Dissolved inorganic phosphorus (DIP) concentration was inversely correlated with water discharge, and DIP was evenly delivered throughout a year. The transports of DIN and DIP from the Changjiang River were consistent with seasonal changes in nutrient distributions and P limitation in the Changjiang Estuary and the adjacent ECS. Dissolved organic and particulate N (DON and PN) and P (DOP and PP) varied parallel to water discharge, and were dominantly transported during a summer flood. The fluxes of DOP and particulate bioavailable P (PBAP) were 2.5 and 4 times that of DIP during this period, respectively. PBAP accounted for 12–16% of total particulate P (PP), and was positively correlated with the summation of adsorbed P, Al–P and Fe–P. Ca–P, the major fraction of PP, increased with increasing percent of CaCO3. The remobilization of riverine DOP and PBAP likely accounted for the summer elevated primary production in DIP-depleted waters in the Changjiang Estuary and the adjacent ECS. The Changjiang River delivered approximately 6% of DIN (1459 × 106 kg), 1% of DIP (12 × 106 kg), and 2% of dissolved organic and particulate N and P to the totals of global rivers. The construction of the Three Gorges Dam might have substantially reduced the particulate nutrient loads, thereby augmenting P limitation in the Changjiang Estuary and ECS.  相似文献   

17.
Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river’s course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5–18.6 cm year–1 on the delta front slope, 2 cm year–1 at the toe of the slope, and 1–2 cm year–1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year–1 in the delta front.  相似文献   

18.
根据历史资料、数据和相关研究,结合研究区域背景,分析苏北废黄河三角洲的演变。结果显示,岸线演变在发育阶段和侵蚀阶段分别为向海延伸约90 km和侵蚀后退约22 km,面积相差约800 km2,三角洲地貌演变表现为岸线平直-曲折-平滑-平直的过程。在废三角洲陆海相互作用的基础上,运用演化模式分析三角洲的演变过程。该三角洲演变可以分为7个演变阶段,发育期在径流和潮流作用下以沙洲并陆淤积延伸方式进行,侵蚀期在波浪和潮流作用下以沙洲合并侵蚀后退和淤积外长交替侵蚀的方式。泥沙输运、人类活动和气候变化对废三角洲的演变有重要影响,巨量的来沙是三角洲发育的原因,泥沙平衡被打破是侵蚀的主要原因。发育期中,泥沙输运影响淤积速度和位置,人类活动和气候变化影响黄河河道迁移、输沙量和产沙量;侵蚀期中,泥沙输运影响侵蚀状态,人类活动在一定程度上影响海岸带冲/淤,气候变化将影响三角洲的演变趋势。  相似文献   

19.
Interaction between freshwater supply and wave activity is described in relation to delta formation associated with ephemeral Greek rivers, discharging into tideless ambient waters. The controlling variables are investigated using the discharge effectiveness index (E f), as applied elsewhere to worldwide large river systems.E f values differ in magnitude for large- and small-scale river/delta systems, characterized by analogous shoreline configurations (i.e., fluvially or wave-dominated). Seasonal fluctuations in river input and wave energy control the evolution of the small systems. High sediment fluxes, related to flood events, are also of fundamental importance to delta evolution.  相似文献   

20.
现行黄河口滨海区冲淤时空演变及其影响因素   总被引:1,自引:0,他引:1  
自黄河入海流路人工改道清 8 汊后,受自然因素变化和人类活动干预影响,入海水沙出现新的情势,河口滨海区水下地形也发生相应调整。本文基于 1997—2018 年实测水深断面资料,建立水下地形数字高程模型 (DEM),综合研究了黄河 口滨海区冲淤的时空演变及其影响因素。结果表明,1997—2018 年黄河口滨海区整体呈淤积状态,累积淤积量为 5.36 * 108 m3。从时间上来看,水下地形演变经历 3 个阶段:缓慢冲刷 (1997—2002 年)、快速淤积 (2002—2007 年)、缓慢淤积 (2007— 2018 年)。从空间上来看,现行河口区呈淤积状态,而孤东近岸和老河口区呈冲刷状态。在水下地形不同的发展阶段,维持冲淤平衡的临界输沙量也有所不同,调水调沙之前为 1.65*108t/a,调水调沙以来为 1.09* 108t/a。来水来沙对河口滨海区的冲淤演变起着主导作用,2016—2017 年调水调沙中断,河口滨海区大面积冲刷。2018 年防洪调度的实施使水下地形迅速淤积。黄河口滨海区演变除了受来水来沙的直接影响,还受泥沙粒径和口门位置的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号