首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The sea level difference between Naze and Nishinoomote and sea level anomalies (the residuals after removal of seasonal variations) around the Nansei Islands were examined in relation to the large meander in the Kuroshio south of central Japan. They are indices of surface velocity and geostrophic transport of the Kuroshio in the Tokara Strait and in the East China Sea, respectively. All of them were large during the meandering period, and each of them reached a maximum before or after the generation of the large meander in 1975. Thus the surface velocity and the geostrophic transport of the Kuroshio in the Tokara Strait and the East China Sea were large during the meandering period. The sea level difference between Naze and Nishinoomote (or Makurazaki) shows that the surface velocity and geostrophic transport in the Tokara Strait were significantly larger during the extinction stage in 1963 and during the generation stage in 1975 and were correlated with the position of the Kuroshio east of Kyûshû in 1974 and 1975 before the generation of the large meander.The surface velocity of the Kuroshio southeast of Yakushima (E-line) based on dynamic calculation referred to 1,000 db was weak during the meandering period, and was out of phase with the variation of surface velocity in the Tokara Strait monitored by tide gauge data. The analysis of GEK and hydrographic data shows that southwestward flow existed below 600 m in the slope region on the E-line and weakened during the meandering period. Thus, the out-of-phase variation in surface velocity mentioned above seems to be partly explained by the variation in velocity on the reference level at the E-line.  相似文献   

2.
Relationships of the sea level differences between Naze and Nishinoomote and between Kushimoto and Uragami with wind stress over the North Pacific are examined for interannual variability. These sea level differences are considered to be indications of Kuroshio transport in Tokara Strait and Kuroshio path south of Enshu-nada, respectively. In the sea level difference between Kushimoto and Uragami, dominant variations are found to have periods of about seven years and 3–4 years. The variation of about 7-year period, which corresponds to that in the Kuroshio path between the large meander and non-large meander, is coherent with the variation of the wind stress curl in a region about 2,400 km east of the Kii Peninsula, where negative stress curl weakens about two years before the sea level difference drops (i.e. the large meander path in the Kuroshio generates). The variation of the 3–4 year period is coherent with that of the wind stress in a large area covering the eastern equatorial Pacific, which suggests that it links with global-scale atmospheric variations. Interannual variation in sea level difference between Naze and Nishinoomote is not coherent with that between Kushimoto and Uragami, which suggests that it is not related to the variation of the Kuroshio path south of Enshu-nada, but is coherent with that of the zonally-integrated Sverdrup transport in the latitudinal zone along 30°N. It is suggested that the interannual variation of the Kuroshio transport in Tokara Strait can be explained by the barotropic response to the wind stress.  相似文献   

3.
Results are described from a limited area barotropic model of the North Pacific with 1/3°×1/3° resolution and bounded by latitudes 10°N and 50°N and longitudes 120°E and 160°E. The model employs dynamics linearised about a state of rest and incorporates realistic bottom topography. It is driven by the seasonally varying part of the Hellerman and Rosenstein wind stress field and by inflow along the northern and eastern boundaries specified from a 1°×1° version of the model applied to the whole North Pacific. The model-calculated transport variations through the Tokara Strait are similar to those of the observed seasonal sea level differences across the Strait, although the model appears to underestimate the amplitude of the signal by a factor of at least 2. The inclusion of realistic bottom topography is shown to be crucial in determining the model response.  相似文献   

4.
Recent investigation suggests that volume transport through the Tsushima/Korea Strait often has double peaks during the summer to autumn period with decreasing transport in September. The satellite-observed wind changes from weak northwestward (across-strait) in summer to strong southwestward (along-strait) in early autumn (September) in the strait. Such a strong along-strait wind is related to tropical cyclones, which frequently pass through the East China Sea in September. The effect of the along-strait wind component on the transport variation is examined using a three-dimensional numerical model. The simulated volume transport through the Tsushima/Korea Strait shows realistic seasonal and intra-seasonal variations. According to sensitivity experiments on local winds, the transport variations in September are mainly generated by strong along-strait (southwestward) wind rather than weak across-strait wind. The strait transport responds to the along-strait wind (southeastward), which produces a sea level increase along the Korean coast, resulting in the geostrophic balance across the strait. The transport minimum through the Tsushima/Korea Strait in September can be determined by the combination of the across-strait geostrophic and along-strait ageostrophic balances. The Editor-in-Chief does not recommend the usage of the term “Japan/East Sea” in place of “Sea of Japan”.  相似文献   

5.
1 IntroductionThe South China Sea (SCS) is the largestmarginal sea in the western Pacific (see Fig. 1). It con-nects with the SCS through the Taiwan Strait, with thePacific through the Luzon Strait, with the Sulu Seathrough the Mindoro and Balabac Straits and with theJava Sea and Andaman Sea through the Sunda Shelf(For convenience, here we refer to the section at 1.5°N,Fig. 2). It is shown that the seasonal SCS circulation ismostly affected by the summer/winter monsoon, andthe no…  相似文献   

6.
Temporal variations of the Kuroshio volume transport in the Tokara Strait and at the ASUKA line are decomposed by phase-propagating Complex EOF modes of high-resolution sea surface dynamic topography (SSDT) field during the first tandem period of TOPEX/POSEIDON and ERS-1 (from October 1992 to December 1993). Both variations are dominated by a mode with nearly semi-annual cycle, which indicates a series of interactions between the Kuroshio and meso-scale eddies. Namely, northern part of a westward-propagating meso-scale eddy at 23°N is captured into the southern side of the Kuroshio at the south of Okinawa, then it moves downstream along the Kuroshio path passing the Tokara Strait, and reaches to the ASUKA line where it merges with another eddy propagating from the east at 30°N. The variation at the ASUKA line is, however, less dominated by this mode; instead, it includes the SSDT variations in the south of Shikoku and the east of Kyushu which would be directly affected by eddies from the east without passing the Tokara Strait. On the other hand, the same analysis for movements of the Kuroshio axis in the Strait indicates that they are governed by short-term variations locally confined to the Kuroshio in the East China Sea without being induced by meso-scale eddies. This results, however, seem to depend strongly on a time scale of interest. It is suggested that the long-term movements of the Kuroshio axis in the Strait would demonstrate coincidence with SSDT variation in the south of Japan.  相似文献   

7.
Variations of current velocity of the Kuroshio are examined using the 1965–1983 sea-level difference between Naze and Nishinoomote, located on the offshore and onshore sides of the Kuroshio in the Tokara Strait south of Kyûshû.Interannual variations of Kuroshio velocity are large, especially at periods longer than five years and around 2.1 years. They are almost determined by those of sea level on the offshore side of the Kuroshio. They are highly coherent with the offshore sea level at periods longer than 1.7 years, and incoherent with the onshore sea level at periods longer than 2.8 years.The mean seasonal variation averaged for 19 years is at its maximum in July and at its minimum in the second half of October, with a sharp decrease in August and September. However, such a variation does not repeat every year. Amplitude, dominant period and phase are greatly different by year, and they can be roughly divided into four groups: small-amplitude group, semiannual-period group, and two annual-period groups with different phases. The only feature found in almost all years is a weak velocity from September to December.The amplitude of seasonal variation tends to be large in the formation years of the large meander (LM) of the Kuroshio and small during the LM period. It is also large in the years preceding El Niño, and diminishes remarkably in El Niño years.Kuroshio velocity in the Tokara Strait is incoherent with position of the Kuroshio axis over the Izu Ridge, but highly coherent with 70-day variations of coastal sea levels which are dominant during the LM period.  相似文献   

8.
南海海面高度季节变化的数值模拟   总被引:8,自引:1,他引:8  
比较POM模式模拟与观测(TOPEX/Poseidon高度计资料)的南海海面高度(SSH)的季节变化在空间分布上的一致性和差异.结果表明:本文使用的POM模式能较好地模拟南海SSH的季节变化;冬季与夏季,春季与秋季南海海面异常场形式完全相反,冬季Ekman输运造成在西海岸的堆积要比夏季在东海岸堆积更明显,而吕宋冷涡中心附近和吕宋海峡海面季节变化振幅最大;除春季以外,在南海绝大部分海域,海面高度的季节变化主要受风力的控制,南海海面热量通量对SSH的季节变化贡献约为20%,风应力对SSH的季节变化的贡献约为80%.  相似文献   

9.
Based on field observations made in winter 2006 and summer 2007 and on multiscene MODerate resolution Imaging Spectrometer (MODIS) imagery, the seasonal variation of suspended-sediment transport in the southern Bohai Strait and its possible mechanisms are examined. The field observations in two different seasons allow an exponential empirical model to be used to retrieve suspended-sediment concentration (SSC) from MODIS imagery. Both the field-survey data and the MODIS-derived SSC show that the sediment transport in the southern Bohai Strait has a significant seasonal variation due to the seasonally varying thermohaline structure of the water column and the hydrodynamics resulting from the seasonally alternating monsoons. The SSC in winter is approximately 3–10 times higher than in summer. Considering the seasonal variation of water flux (WF) and SSC, the annual sediment flux (SSF) through the southern Bohai Strait is estimated to be approximately 40.0 Mt yr−1, about 4–8 times previous estimates, which did not take into account seasonal variation. Although the Huanghe (Yellow River) discharges a large amount of sediment in the summer, the SSF through the southern Bohai Strait in the winter (∼32.0 Mt) is about 4 times greater than it is in the summer. The strong seasonal variability of SSF through the southern Bohai Strait indicates that strong resuspension along the coast of the Huanghe delta in winter and enhanced longshore transport by coastal currents due to winter monsoon activity might be the major mechanisms of cross-strait transport of sediment in winter.  相似文献   

10.
The mechanism governing the mean state and the seasonal variation of the transports through the straits of the Japan Sea is studied using a newly presented, simple analytical model and a basin scale general circulation model (GCM). The GCM reproduces the transports through the straits of the Japan Sea realistically owing to its fine horizontal resolution of about 20 km and realistic topography. A series of experiments conducted by changing surface forcing shows that the annual mean wind-driven circulation in the North Pacific Ocean is most responsible for the formation of the mean transports. It is also found that the seasonal variation of the alongshore component of monsoonal wind stress over the North Pacific basin, especially that over the Okhotsk Sea, is responsible for the seasonal variation of the transports. The simple analytical model can explain these simulated features very well. The physical concept of this model is based on the formation of the around-island circulation through the adjustment of coastally trapped waves and Rossby waves and geostrophic control at the narrow straits. It solves the sea surface heights (SSHs) at the edge of each strait and the transport through it. The value of the line integral of the SSH along the island is determined by the baroclinic Rossby waves approaching the island from the east and the alongshore wind stress around the island. The basin scale seasonal variation of SSH along the coast induced by the variation of the alongshore monsoonal wind stress can also be incorporated into this model by giving the SSH anomaly at the northeastern point of the Soya Strait. Thus, it is suggested that both the mean state and the seasonal variation are caused mainly by wind stress forcing. Minor modification by the seasonal heat flux forcing brings the amplitude and the phase of the seasonal variation closer to the observed values.  相似文献   

11.
本文基于2002—2016年OFAM(Ocean Forecast Australian Model)模式数据,通过谱分析与相关分析等方法,研究了龙目海域上层环流结构的季节变化特征及主要的影响因素。分析结果表明,龙目海峡(Lombok Strait)平均流量占印尼贯穿流(Indonesian throughflow, ITF)总出口流量的15%,呈现出南半球冬强夏弱的特点,具有半年和一年的周期特征;龙目海域上层环流结构具有明显的季节特征,受到卡里马塔海峡贯穿流(Karimatastraitthroughflow,KSTF)和望加锡海峡贯穿流(Makassarstrait throughflow,MSTF)的周期性影响,一年可以分为四个阶段,存在结构性差异。KSTF(MSTF)为上层龙目海峡带来高温低盐(低温高盐)水团。进一步分析发现局地风场、大气季节内振荡(Madden-Julian Oscillation, MJO)以及海底地形是龙目海域上层环流结构季节变化的主要影响因素。  相似文献   

12.
利用1977-1991年日本“KuroshioExploitationandUtilizationResearch”(KER)资料和日本气象厅海洋观测资料计算吐噶喇海峡的黑潮流速和流量。结果表明,海峡处黑潮主轴的平均核心流速为92.0cm/s,平均流量为周.1×106m3/s;揭示了吐噶喇海峡黑潮流速的多核结构和多股流动的突出特征。探讨了海峡中流量分布状况和季节变化。  相似文献   

13.
The aim of this study is to elucidate the seasonal variation in the volume transport through the Tsushima-Korea Strait using the sea level difference across the Strait. The sea level difference associated with the baroclinic motion is estimated from the geostrophic current profile, which is calculated as its vertical integrated transport is zero, using the CTD data from 1988 to 1990. The sea level difference associated with the barotropic motion is estimated by subtracting the sea level difference associated with the baroclinic motion from the observed one. The range (maximum-minimum) of the seasonal variation in the volume transport is evaluated about 0.7 Sv on the average, using the sea level difference associated with the barotropic motion. It is one third of the seasonal variation in the volume transport which is estimated from observed sea level difference on the assumption that no baroclinic component exists. Such analyses also indicate that the volume transport was at a maximum in early winter and at a minimum in early spring from 1988 to 1990. The negative correlation is also found between the volume transport through the eastern channel and that through the western channel. Moreover, it is noticed that the seasonal variation in the surface current velocity in the Strait largely contains baroclinic motions which are locally caused in the Tsushima-Korea Strait.  相似文献   

14.
The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project.The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation.From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv).The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual event was noticed in November–December 2001, which corresponded to a very low transport (0.3 Sv), which was characterised by a cyclonic circulation in the western Alboran Sea. That circulation was also reproduced by the model for other periods than winter during the interannual simulation.The transport through the Strait of Sicily is not influenced by local wind.The wind stress curl of the northwestern Mediterranean influenced the transport through the Strait of Corsica.  相似文献   

15.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation.  相似文献   

16.
Distribution of the sea surface temperature (SST) across the Kuroshio has been measured in the Tokara Strait by the Kagoshima Prefectural Experimental Fishery Station, using a thermometer installed on boardEmerald-Amami, a ferry that operates regularly between Kagoshima and Naha. The data from 1 October 1978 to 30 September 1981 were analyzed in this paper.A sharp temperature front is usually formed at the northern edge of the current zone of the Kuroshio, and its position is very variable and moves north and south between Satamisaki and Nakanoshima. The northward migration of the front can easily be traced, but the southward migration is obscure in many cases. Some of the southward migrations seem to be understood as arising from the alternate appearance of two different fronts, namely a weakening of the northern front and a strengthening of the southern front, which are associated with the double structure of the Kuroshio front. The temperature contrast across the Kuroshio front is very weak in August through October, and the phase of its seasonal variation lags a few months behind that of temperature itself. Transitions between the states with and without temperature contrast occur suddenly, though the transition times differ year by year. Periodical fluctuations with a period of several tens of days are often observed in the migration region of the Kuroshio front. The fluctuations sometimes look very periodical within limited time periods, but the fluctuations are very changeable in nature from year to year.The results show that continuous observation of the SST distribution across the Tokara Strait yields a good tool for monitoring fluctuations of the Kuroshio path and the occurrence of the Ohsumi Branch Current, at least in the season when a large horizontal temperature contrast exists.  相似文献   

17.
东海与邻近海域水、热、盐通量的季节变化研究   总被引:1,自引:0,他引:1  
本文基于高分辨率的区域海洋数值模式对东海及邻近海域进行温、盐、流的数值模拟,模拟结果与实测结果拟合较好。结果表明:东海与邻近海域的水交换过程具有显著的季节变化特征。从流量的角度看,台湾海峡、台湾-西表岛之间水道和西表岛-冲绳岛之间水道是外海水流入东海的3个主要水道,而冲绳岛-奄美大岛、吐噶喇海峡、大隅海峡、济州岛东部和黄东海断面是海水流出东海的水道;其年平均体积输运值分别为1.06×106 m3/s、20.49×106 m3/s、3.20×106 m3/s、-0.92×106 m3/s、-20.59×106 m3/s、-0.30×106 m3/s、-2.37×106 m3/s和-0.37×106 m3/s(向内为正)。对比发现,东海与邻近海域之间各水道的体积、热量和盐量输运均具有相似的季节变化趋势,其最大值往往出现在夏季(7月或8月),最小值往往出现在冬季(1月或2月)。从7月到11月整个东海是流量净流出的过程,而从12月到翌年6月是流量净流入的过程,全年流量基本上保持平衡状态。东海终年存在向黄海的净输入,其体积、热量和盐量的年平均输运值分别为0.37×106 m3/s,0.027×1015 W和12.7×106 kg/s。  相似文献   

18.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

19.
研究环流和沉积物输运对北部湾的环境保护和资源开发十分重要。本文使用区域海洋模型(ROMS),研究了北部湾海域的季节环流、沉积物输运以及长期的地形演变过程。展示了湾内冬季和夏季都存在逆时针环流,冬季的风生环流比夏季强的特征。悬沙浓度较大值主要分布在琼州海峡、海南岛西侧海域,以及越南沿岸、雷州半岛沿岸等近岸地区。沉积物在琼州海峡附近表现为在冬季由东向西输运,夏季则相反;在琼州海峡西口处,沉积物全年以西向输运为主。结果显示,北部湾内沉积物输运主要由潮流引起的再悬浮控制。侵蚀和淤积的分布模式为:(1)湾内大部分区域侵蚀淤积不明显,(2)琼州海峡两侧口门附近淤积比较明显,(3)琼州海峡内深槽侵蚀严重,(4)海南岛西侧海域存在侵蚀和淤积交替发生区域。  相似文献   

20.
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS), the high-resolution SCS deep circulation is numerically investigated. The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July), a northeastsouthwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn. The sensitivity ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号