首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Producing high-quality match-ups coupling the Japanese geostationary satellite, Himawari-6 (H6), and buoy SST observations, we have developed the new SST retrieval method. Kawamura et al. (2010) developed the previous version of SST product called MTSAT SST, which left several scientific/technical questions. For solving them, 6,711 algorithm tuning match-ups with precise navigation and 240,476 validation match-ups are generated for covering all seasons and wide ocean coverage. For discriminating the previous MTSAT SST, we call the new version of SST H6 SST. It is found that the SZA dependences of MTSAT SST algorithm are different from area to area of SZA > 40–50° N/S. The regionally different SZA dependences are treated by dividing the H6 disk coverage into five areas by the latitude lines of 40° N/S first and the longitude lines of 100° K and 180° K. Using the algorithm tuning match-ups, Nonlinear SST (NLSST) equations are derived for all of the five areas. Though the sun zenith angle dependency correction term is also examined, there is no significant regional difference. Therefore, this term is used in the H6 SST algorithm again. The new H6 SST equation is formed by the areal NLSST and the sun zenith angle dependency term for each area. The statistical evaluation of H6 SST using the validation match-ups show the small negative biases and the RMS errors of about 0.74° K for each area. For the full H6 disk, the bias is −0.1° K and the RMS error 0.74° K. The histogram of H6 SST minus the in situ SST for each area has a similar Gaussian shape with small negative skewness, and the monthly validation of H6 SST for each area is consistent with those for the whole period and the histograms  相似文献   

2.
Hourly sea surface temperature(SST) observations from the geostationary satellite are increasingly used in studies of the diurnal warming of the surface oceans. The aim of this study is to derive the spatial and temporal distribution of diurnal warming in the China seas and northwestern Pacific Ocean from Multi-functional Transport Satellite(MTSAT) SST. The MTSAT SST is validated against drifting buoy measurements firstly. It shows mean biases is about –0.2°C and standard deviation is about 0.6°C comparable to other satellite SST accuracy. The results show that the tropics, mid-latitudes controlled by subtropical high and marginal seas are frequently affected by large diurnal warming. The Kuroshio and its extension regions are smaller compared with the surrounding regions. A clear seasonal signal, peaking at spring and summer can be seen from the long time series of diurnal warming in the domain in average. It may due to large insolation and low wind speed in spring and summer, while the winter being the opposite. Surface wind speed modulates the amplitude of the diurnal cycle by influencing the surface heat flux and by determining the momentum flux. For the shallow marginal seas, such as the East China Sea, turbidity would be another important factor promoting diurnal warming. It suggests the need for the diurnal variation to be considered in SST measurement, air-sea flux estimation and multiple sensors SST blending.  相似文献   

3.
SST Availabilities of Satellite Infrared and Microwave Measurements   总被引:5,自引:1,他引:5  
To investigate the feasibility and methodology of new generation sea surface temperature (SST) maps that combine various satellite measurements, we have quantitatively evaluated SST availabilities of NOAA AVHRR (National Oceanic and Atmospheric Administration, Advanced Very High Resolution Radiometer), GMS S-VISSR (Geostationary Meteorological Satellite, Stretched-Visible Infrared Spin Scan Radiometer) and TRMM MI (Tropical Rainfall Measuring Mission, Microwave Imager: TMI), during the one-year period from October 1999 to September 2000. The advantage of satellite microwave SST measurements is the ability to penetrate the clouds that contaminate satellite infrared measurements. Daily SST availabilities were calculated in the overlapping coverage from 20°N to 38°N and 120°E to 160°E. The annual-mean SST availabilities of AVHRR, S-VISSR and TMI are 48%, 56% and 78%, respectively. There are large seasonal variations in the availabilities of infrared measurements. The latitude-time plots of one-degree zonal mean SST availabilities of S-VISSR and TMI in the region from 38°S to 38°N and 80°E to 160°W show significant zonal variations, which are influenced by the atmospheric circulation such as the Subtropical High and the Intertropical Convergence Zone. The SST availabilities of S-VISSR and TMI in the five selected regions have large regional variations, ranging from 35% to 74% and 62% to 88% for S-VISSR and TMI, respectively. The present statistical analyses of SST availabilities in the infrared and microwave measurements indicate that 1) a daily cloud-free high-spatial resolution may be achieved by merging various SST measurements since their deficiencies compensate each other, and 2) nevertheless, it is necessary to take account of the seasonal and regional variations of SST availabilities of different satellite sensors for the development of merging technology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The authors have verified a regression model for the evaluation of the daily amplitude of sea surface temperature (ΔSST) proposed by Kawai and Kawamura (2002). The authors investigated the accuracy of satellite data used for the evaluation and showed that ΔSST error caused by satellite data error is less than ±0.7 K. The evaluated ΔSSTs were compared with in situ values. Its root-mean-square error is about 0.3 K or less, except for a coastal region, and it has a bias of more than +0.1 K in the tropics. This bias can be removed by considering latent heat flux. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
An empirical method has been developed for estimation of sea surface temperature (SST) at dawn and noon in local time from microwave observations at other times of the day. By using solar radiation, microwave sea surface wind, and SSTs, root-mean-square differences were reduced to approximately 0.75 and 0.8 °C for dawn and noon, respectively. The pseudo SST variation and spatial patterns found in daily mean SST values by simple averaging of samples were damped down by use of diurnal correction. The satellite SST with the diurnal correction shows highly significant coherent variation with in-situ measurements.  相似文献   

6.
A sea surface temperature (SST) retrieval algorithm for Global Imager (GLI) aboard the ADEOS-II satellite has been developed. The algorithm is used to produce the standard SST product in the Japan Aerospace Exploration Agency (JAXA). The algorithm for cloud screening is formed by combinations of various types of tests to detect cloud-contaminated pixels. The combination is changed according to the solar zenith angle, which enables us to detect clouds even in the sun glitter region in daytime. The parameters in the cloud-detection tests have been tuned using the GLI global observations. SST is calculated by the Multi-Channel SST (MCSST) technique from the detected clear pixels. Using drifting buoy measurements, match-up data are produced to derive the coefficients of the MCSST equations and to examine their performance. The bias and RMSE of the GLI SST are 0.03 K and 0.66 K for daytime and, −0.01 K and 0.70 K for nighttime, respectively.  相似文献   

7.
We have developed an algorithm to estimate the wide-ranging Sea Surface Temperature (SST) data from the GMS-5 (Geostationary Meteorological Satellite) S-VISSR (Stretched-Visible Infrared Spin Scan Radiometer). Better SST estimates are realized by averaging the temporal variation of the VISSR calibration table and decreasing noise of the split-window terms using a spatial filter. The effects of the satellite zenith angle were examined in detail for better estimates, and VISSR-derived SSTs with root-mean-square (rms) error of 0.8 K were achieved using a new algorithm. The accuracy of SST estimates has been improved by using the temporal-spatial average of the split-window terms. Using the new techniques, we demonstrate that the hourly wide-ranging SST image data can be used to study the daily variations of SSTs in the Northern and Southern Pacific Oceans.  相似文献   

8.
HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST),sea surface wind speed,columnar water vapor and columnar cloud liquid water detection.In this paper,the initial SST product of RM was validated with in-situ data of National Data of Buoy Center(NDBC) mooring and Argo buoy.The validation results indicate the accuracy of RM SST is better than 1.7 C.The comparison of RM SST and WindSat SST shows the former is warmer than the latter at high sea surface wind speed and the difference between these SSTs is depend on the sea surface wind speed.Then,the relationship between the errors of RM SST and sea surface wind speed was analyzed using NDBC mooring measurements.Based on the results of assessment and errors analysis,the suggestions of taking account of the affection of sea surface wind speed and using sea surface wind speed and direction derived from the microwave scatteromter aboard on HY-2 for SST product calibration were given for retrieval algorithm improvement.  相似文献   

9.
基于2018年4种红外辐射计(MODIS-Aqua,MODIS-Terra,VIIRS和AVHRR)的SST数据和3种微波辐射计(GMI,WindSat和AMSR2)的SST数据,分析了7种星载辐射计SST数据的全球覆盖情况,利用Argo数据对7种辐射计SST数据进行了真实性检验,并开展了微波产品、红外产品和Argo的交叉比对分析。结果表明:VIIRS SST数据的覆盖率、有效覆盖天数均高于MODIS-Aqua、MODIS-Terra和AVHRR;AMSR2微波辐射计SST数据的覆盖率和有效覆盖天数均高于GMI和WindSat;4种红外辐射计SST数据与Argo浮标数据的平均偏差在-0.27~0℃,均方根误差小于0.76℃,其中VIIRS数据质量最好;3种微波辐射计SST数据与Argo浮标数据的平均偏差在-0.04~0.22℃,均方根误差小于0.88℃,其中AMSR2绝对偏差、标准偏差和均方根误差均小于其他2个微波辐射计数据。AMSR2和VIIRS的SST数据交叉对比发现,AMSR2与APDRC Argo、VIIRS与APDRC Argo的平均偏差分别小于0.15和-0.20℃,标准偏差分别小于0.52和0.60℃;AMSR2与VIIRS平均偏差在-0.23~-0.10℃,标准偏差小于0.41℃,两者具有较高的一致性。  相似文献   

10.
The Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) is a five-channel radiometer with wavelength from 0.6 to 12 μm. Daily 0.125° sea surface temperature (SST) data from VIRS were first produced at the National Space Development Agency (NASDA) for comparison with SST from TRMM Microwave Imager (TMI). In order to obtain accurate high spatial resolution SST for the merging of SST from infrared and microwave measurements, new SST retrieval coefficients of the Multichannel SST (MCSST) algorithm were generated using the global matchups from VIRS brightness temperature (BT) and Global Telecommunications System (GTS) SST. Cloud detection was improved and striping noise was eliminated. One-year global VIRS level-1B data were reprocessed using the MCSST algorithm and the advanced cloud/noise treatments. The bias and standard deviation between VIRS split-window SST and in situ SST are 0.10°C and 0.63°C, and for triple-window SST, are 0.06°C and 0.48°C. The results indicate that the reprocessing algorithm is capable of retrieving high quality SST from VIRS data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Diurnal Sea Surface Temperature (SST) variations and the near-surface thermal structure of the tropical hot event (HE) have been investigated using advanced in-situ equatorial observations with hourly temporal resolution. The information on the HE area defined by the satellite cloud-free SSTs is used to sample the in-situ observations. The in-situ SSTs sampled for the HE conditions show that a maximum (minimum) SST has a histogram mode at 30.8°C (29.0°C), and frequently appears at 15:00 (07:00) local time. The amplitude of the diurnal SST variation (DSST) is defined by the difference between the maximum and minimum SSTs. The mean DSST during HEs is greater than 0.5°C, and has a maximum of about 0.75°C at the HE peak. The time series of mean DSST gradually increases (rapidly decreases) before (after) the peak. The satellite SST has a systematic positive bias against the corresponding daytime SST measured by the Triangle Trans-Ocean buoy Network. This bias is enhanced under conditions of large in-situ DSST. One-dimensional numerical model simulation suggests that the systematic bias is caused by the sharp vertical temperature gradient in the surface layer of HE. The near-surface thermal structure is generated by conditions of high insolation and low wind speed, which is the typical HE condition.  相似文献   

12.
Based on 5 831 continuous in situ measurements of the partial pressure of carbon dioxide on the sea surface p(CO2),related parameters of the sea surface temperature(SST) and chlorophyll-a(Chl a) concentration in 2010 winter,spring and summer of the Huanghai Sea and the Bohai Sea,the inherent relations among them are investigated preliminarily.This study reveals that the seasonal variability of SST and Chl a concentration has a significant influence on p(CO2).The authors have proposed a new algorithm to estimate p(CO2) from SST and Chl a concentration measurements.Compared with the vessel data,the root mean square error(RMSE) of p(CO2) retrieved by using the new model is 13.45 μatm(1atm=101.325 kPa) and the relative error is less than 4%.Then,SST and Chl a concentration data observed by satellite are used to retrieve p(CO2) in the Huanghai Sea and the Bohai Sea;and a better accuracy can be obtained if the quality control for sea surface chlorophyll-a concentration observed by satellite is used.The RMSE of retrieved p(CO2) data with quality control and that without quality control are 15.82 μatm and 31.74 μatm,respectively.  相似文献   

13.
基于Himawari-8卫星的逐时次海表温度融合   总被引:1,自引:0,他引:1  
Himawari-8卫星是日本气象厅发射的新一代地球同步静止气象卫星,为获取逐时次海表温度产品提供了有力数据支持。本文以Himawari-8 AHI海表温度为基础,利用最优插值法融合GCOM-W1 AMSR2海表温度和NERA-GOOS现场观测资料,生成逐时次海表温度融合产品。为了充分利用邻近时刻的海表温度观测资料,利用Himawari-8 AHI海表温度和欧洲中期天气预报中心海面风速数据建立匹配数据集,研究建立海表温度日变化模型,实现邻近时刻海表温度的订正;为了消除多源海表温度间的系统偏差,以Himawari-8 AHI海表温度为目标数据,利用泊松方程对GCOM-W1 AMSR2海表温度进行偏差订正。实验验证结果表明,利用逐时次海表温度融合产品计算的日增温情况与海面风速具有较好的相关性,间接证实了逐时次海表温度融合产品的准确性;另外,逐时次海表温度融合产品与现场观测海表温度的偏差为0.09℃、均方根误差为0.89℃,二者具有较好的一致性,说明逐时次海表温度融合产品具有较高的精度。  相似文献   

14.
A new 0.1° gridded daily sea surface temperature(SST) data product is presented covering the years 2003–2015. It is created by fusing satellite SST data retrievals from four microwave(Wind Sat, AMSR-E, ASMR2 and HY-2 A RM)and two infrared(MODIS and AVHRR) radiometers(RMs) based on the optimum interpolation(OI) method. The effect of including HY-2 A RM SST data in the fusion product is studied, and the accuracy of the new SST product is determined by various comparisons with moored and drifting buoy measurements. An evaluation using global tropical moored buoy measurements shows that the root mean square error(RMSE) of the new gridded SST product is generally less than 0.5℃. A comparison with US National Data Buoy Center meteorological and oceanographic moored buoy observations shows that the RMSE of the new product is generally less than 0.8℃. A comparison with measurements from drifting buoys shows an RMSE of 0.52–0.69℃. Furthermore, the consistency of the new gridded SST dataset and the Remote Sensing Systems microwave-infrared SST dataset is evaluated, and the result shows that no significant inconsistency exists between these two products.  相似文献   

15.
This study compares infrared and microwave measurements of sea surface temperature (SST) obtained by a single satellite. The simultaneous observation from the Global Imager (GLI: infrared) and the Advanced Microwave Scanning Radiometer (AMSR: microwave) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) provided an opportunity for the intercomparison. The GLI-and AMSR-derived SSTs from April to October 2003 are analyzed with other ancillary data including surface wind speed and water vapor retrieved by AMSR and SeaWinds on ADEOS-II. We found no measurable bias (defined as GLI minus AMSR), while the standard deviation of difference is less than 1°C. In low water vapor conditions, the GLI SST has a positive bias less than 0.2°C, and in high water vapor conditions, it has a negative (positive) bias during the daytime (nighttime). The low spatial resolution of AMSR is another factor underlying the geographical distribution of the differences. The cloud detection problem in the GLI algorithm also affects the difference. The large differences in high-latitude region during the nighttime might be due to the GLI cloud-detection algorithm. AMSR SST has a negative bias during the daytime with low wind speed (less than 7 ms−1), which might be related to the correction for surface wind effects in the AMSR SST algorithm.  相似文献   

16.
Real-time generation and distribution of the New Generation Sea Surface Temperature for Open Ocean (NGSST-O) product began in September 2003 as a demonstration operation of the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution Sea Surface Temperature Pilot Project. Satellite sea surface temperature (SST) observations from infrared radiometers (AVHRR, MODIS) and a microwave radiometer (AMSR-E) are objectively merged to generate the NGSST-O product, which is a quality-controlled, cloud-free, high-spatial-resolution (0.05° gridded), wide-coverage (13–63° N, 116–166° E), daily SST digital map. The NGSST-O demonstration operation system has been developed in cooperation with the Japanese Space Agency (JAXA) and has produced six years of continuous data without gaps. Comparison to in situ SSTs measured by drifting buoys indicates that the root mean-square error of NGSST-O has been kept at approximately 0.9°C.  相似文献   

17.
汪金涛  高峰  雷林  官文江  陈新军 《海洋学报》2014,36(12):119-124
西南大西洋阿根廷滑柔鱼Illex argentinus是短生命周期种类,其资源量极易受到海洋环境变化的影响。根据2003—2011年我国鱿钓船队在西南大西洋的生产统计数据,以及产卵场海洋表面温度(SST)、海表温度距平值(SSTA),计算分析了阿根廷滑柔鱼在产卵期产卵场各月最适表层水温范围占总面积的比例(用PS表示)以及表征海流强度的SST、SSTA等多种环境变量因子与单位捕捞量渔获量(CPUE)的相关性,建立多种基于主要环境因子的资源补充量预报模型,同时分析比较预报模型的优劣。相关性分析表明:6月份有3片连续区域的SST与CPUE之间存在强相关性,分别为38°~39°S、54°~55°W,40.5°~41.5°S、51°~52°W,39.9°~40.4°S、42.6°~43.1°W。利用6月份此3片连续区域SST与次年CPUE建立的三元线性模型,模型符合统计检验,偏差解释率为82.4%。在此基础上加入7月份PS影响因子建立3种方案下的误差反向传播(EBP)神经网络模型。结果认为,包含了福克兰寒流与巴西暖流表温信息的方案3模型优于其他两种模型,其准确率可以达到90%以上。  相似文献   

18.
The influence of the sea surface temperature (SST) on the carbon dioxide (CO2) exchange with the atmosphere at different spatial and temporal scales, which has a multidirectional character, was studied. The initial data included the monthly averages of the CO2 flux during the period of 1982–2011 at grid nodes of 4° by latitude and 5° by longitude, as well as the SST satellite data from January 1, 1982 to December 31, 2012 at the geographical grid nodes of 0.25° × 0.25°. Statistical models of estimation of the resulting global CO2 flux were suggested on the basis of data on SST anomalies. It is demonstrated that the SST variations in the equatorial zone mostly control the interannual fluctuations of the resulting CO2 flux in the ocean-atmosphere system.  相似文献   

19.
An accurate platinum resistance thermometer (PRT) has been installed on a commercial ferry that operates between Hillarys Marina, some 15 km north of Fremantle, and Rottnest Island off the Western Australian coast. The PRT is located in the engine intake system and provides continuous under-way measurements of the bulk sea surface temperature (SST) at a depth of 1 m. The “SeaFlyte” ferry makes the trip to Rottnest Island between 3 and 5 times daily and so a wealth of data is available for comparison with the SST derived using data from the GLI instrument on ADEOS-II. Analyses of the ferry and satellite data confirm the excellent quality of SST estimates from the GLI as well as four other satellite instruments—AVHRR on NOAA-16, AATSR on ENVISAT, and the MODIS instruments on TERRA and AQUA. All satellite instruments showed a comparison standard deviation of better than 0.6°C with GLI being better than 0.4°C. The number of ferry-satellite data coincidences used in this study demonstrates one of the advantages of installing measurement systems on commercial ships that operate regular passenger or freight services rather than infrequent deployments on research vessels. The analyses also demonstrate that satellite-derived SST estimates obtained under low surface wind conditions must be treated with care.  相似文献   

20.
基于变分理论算法实现了METOP-A卫星AVHRR传感器探测数据的海洋表面温度变分反演,进行了连续1个月的海表温度反演试验,并分别从全球、分纬度带和天气系统活跃区域3个方面,将变分反演结果(VAR SST)与利用统计回归方法反演相同卫星得到的海表温度产品(GBL SST)、其他海温融合产品(OISST)及实际浮标观测数据等进行一系列评估。从全球评估指标看出,以OISST为参照,VAR SST要优于GBL SST;以浮标观测为参照,VAR SST略逊于GBL SST,而且VAR SST还改进了GBL SST随时间波动大的缺点;从分纬度带对比看出,在与OISST对比时,VAR SST在低纬度地区和北半球中纬度地区的质量要优于GBL SST,海温反演精度较高。研究还表明,由于变分方法考虑了大气状态的变化,能够更加有效订正卫星遥感过程中大气的削弱作用,从而反演出精度更高的海表温度,尤其在天气系统较为复杂的区域效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号