首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
波浪破碎过程产生的湍流动量和能量垂向输运对于加快海洋上混合层中垂向混合具有显著效果。采用二维实验室水槽中对波浪破碎过程进行模拟。对采集的波浪振幅时间序列采用希尔伯特变换定位破碎波位置,波浪的破碎率随有效波高的增加而增大,波浪谱分析得到的波浪基本周期与有效周期结果相似。实验中采用粒子图像测速技术(particle image velocimetry, PIV)计算波浪破碎过程中湍动能耗散率的空间分布。湍流强度与波浪的相位密切相关,波峰位置处湍流活动最为剧烈,而且波峰位置处湍流混合区内湍动能耗散率量值的垂向分布基本保持不变,即出现"湍流饱和"现象,湍流影响深度可以达到波高的70%—90%。计算湍流扩散系数的垂向分布发现,湍流扩散在混合区上部随深度的增大以指数函数的形式增加,在混合区下部趋于稳定。作为对比,在相同位置处对声学多普勒流速测量仪(acoustic Doppler velocimeter, ADV)测量的单点流速做频谱分析,发现与该位置处PIV湍动能耗散率结果量级处于同一水平,进一步验证了实验结果的准确性。  相似文献   

2.
在河口海岸工程中,常常会面临岸滩冲蚀、岸线演变、航道淤积、建筑物底部淘刷等涉及泥沙起动和输运的问题,而水流对底床的剪切力是研究泥沙起动与输运的重要参数。本文利用自行设计的底床剪切力测量装置,在不同流速的水流中,分别在固定砂床(定床)和可移动砂床(动床)上进行了底部剪切力的直接测量;同时,根据试验中声学多普勒流速仪(ADV)测得的流速信息,采用湍流动能法对底床剪切力进行了估算。结果显示:当比例系数取值0.19时,估算出的底床剪切力与测量值吻合较好。对测量结果进行分析后发现,流速较小、砂粒未起动时,动、定砂床上的底部剪切力大致相同;在有砂粒起动的情况下,动床上的底部剪切力比定床上的大,相对差值最大约20%。因此当涉及底床剪切力的问题时,需要先确认床面形式,然后再进行分析研究。  相似文献   

3.
为了探究海底地形对湍流动能收支的影响,本文使用并行大涡模拟模式(The Parallelized Large-Eddy Simulation Model,PALM),以坡陡作为无量纲地形参数(δ),设置了亚临界、临界和超临界三种地形状态(δ=0.5,1和2)进行数值模拟。文章计算并呈现了地形作用下的流体速度和湍流动能收支分布,以及湍流动能平衡方程各参量。通过回归分析和量纲分析重点讨论了地形顶点处耗散和海表处能量的耗散,与地形坡陡的关系,得出其关系均呈指数形式。  相似文献   

4.
黎为  任杰 《海洋学报》2018,40(3):16-24
利用1 200 kHz的宽频RDI ADCP于2015年7月在磨刀门河口拦门沙前缘的浅水站和沿岸流影响的深水站进行座底观测,采样频率为1 Hz,数据经滤波去噪处理,应用方差方法分析了磨刀门的羽状流湍流动力特征。结果表明,磨刀门河口水流表现出3层流结构,峰值流速出现在表层的羽状流层,深水区雷诺应力量级为10-3~10-5 m2/s2,小于拦门沙前缘的湍流脉动强度;拦门沙前缘和深水区湍流动能密度参数的范围均在0.01~0.6 m2/s2左右,羽状流的湍动能比底边界层高一个数量级。拦门沙前缘羽状流的湍动能生成率量级约为10-3 W/kg,比底层大2~3个量级,且远强于深水区;垂直涡黏系数的大小约为0~0.15 m2/s。总的来说,羽状流表现出层化稳定、混合强烈,以及高的湍动能生成率,为羽状流携带高浊度悬沙离岸远距离搬运提供了湍流动力条件。  相似文献   

5.
本文首先简要地回顾了泥沙起悬与沉降量确定的研究现状,然后通过引入泥沙场扬动条件,根据近底水流中湍流脉动的随机特性,利用概率统计的方法确定泥沙的起悬五沉降量,以此来反映悬移泥沙在其运动底部边界上所发生的质量交换,最后用悬沙平衡输移计算对此进行了验证。  相似文献   

6.
揭示极端天气影响的红树林潮滩潮流能量耗散过程是理解生物海岸演变及滨海湿地生态修复工程的核心内容。以北部湾防城港东湾白骨壤红树林潮滩为例,基于声学多普勒流速仪(ADV)获取区域2020年8月连续6天的水动力和白骨壤红树林下垫面植被实测数据,分析白骨壤潮滩近底层动力响应台风“森拉克”的耗散过程。结果表明:1)正常天气涨、落潮期间,自光滩到白骨壤红树林林内近底层湍流动能变化具有潮汐不对称性特征。涨潮期间光滩—白骨壤红树林边缘、白骨壤红树林边缘—林内潮流挟沙能量分别通过泥沙沉降以及搬运泥沙两种方式沿程消耗,落潮期间潮流挟沙能量主要以泥沙净沉降的方式消耗。2)白骨壤通过其潮滩表层向上发育长约10 cm的呼吸根以降低湍流垂向紊动;红树林边缘的枝、叶通过影响水平方向上的水流动力,致使潮流挟沙能耗降低。3)与正常天气比较,台风“森拉克”期间东湾自光滩到白骨壤红树林林内近底层水体流速无明显变化,但流向偏转幅度明显变大。同时湍流动能的耗散率和用以搬运泥沙为主的潮流挟沙能耗亦均增大。  相似文献   

7.
该文对已建立的齐次湍流动能输运方程封闭模型 (HKE)封闭的浅海动力学模型进行了检验。湍流混合强度的垂直分布会影流速剖面 ,在风海流、狭长渠道稳态风潮及渠道振荡流流场等的模拟中 ,HKE封闭均取得满意效果 ,结果表明 HKE封闭在正压浅海动力学中是有效的 ,可避免混合长理论的缺陷 ,并未过多增加计算量。振荡流的湍流粘性系数的时间分布特性是时变的 ,其变化频率为振荡频率的两倍 ,且在流速变化最大时湍流混合最强。对应于浅海潮波系统 ,平潮和停潮时局地混合最弱 ,因而最适宜水质采样 ,反之 ,涨急和落急时刻湍流混合最强。但当取湍动能的Schmidt数 σk>10时 ,湍粘性系数的振幅仅为其平均值的 15 % ,因此可以认为在 15 %误差内振荡流的粘性系数可用一个时间平均值来代表  相似文献   

8.
在湍流局地平衡假设下 ,建立了齐次湍能输运方程封闭模型 (HKE) ,并在平板边界层的两种经典流动中加以检验 ,给出 HKE封闭下的流速、湍流动能和湍流混合系数剖面的形式解。结果表明 ,HKE可以避免在流速剪切为零时的无湍流混合问题 ,其解与 L aufer湍流实验吻合 ,因而HKE模型比混合长理论有更合理的内涵。文中还给出 HKE封闭的浅海动力学模型 ,以湍应力和水位梯度力的平衡为运动的基本受力平衡 ,进行了模型的量阶分析和运动分析 :当阻尼频率和运动频率同量阶时 ,惯性运动不可忽略 ;在潮振荡占优的浅海中 ,对流非线性相对于惯性运动为小量 ;当阻尼频率足够大时 ,科氏力项相对于湍应力也可能为小量。  相似文献   

9.
非均匀沙隐暴作用的研究现状及其起动矢量式   总被引:1,自引:0,他引:1  
系统回顾近几十年来国内外有关非均匀沙隐暴作用的研究状况,阐述诸多研究成果的局限性及其存在的不足.在此基础上,作者采用最新的矢量力学分析方法,探讨任意面上处于隐蔽和暴露状态的泥沙颗粒的受力关系,建立了更具一般性的非均匀沙起动流速矢量公式.文中又对不同方位床面上的泥沙起动公式进行有益的讨论,并对暴露状态下的一维公式进行了验证.  相似文献   

10.
河口底边界层湍流观测后处理技术方法分析   总被引:10,自引:5,他引:5  
河口底边界层过程是河口海岸研究与工程应用中的重要内容。三维点式高频流速仪(ADV)已经成为湍流现场观测的最有效的工具之一,然而受测量状态、复杂的波流环境、底床几何结构等因素的影响,湍流观测的后处理目前还不成熟。在前人工作的基础上,提出了河口底边界层湍流观测后处理的综合技术方法,包括测量状态判断、数据质量检测、坐标系旋转、去除毛刺及滤波,探讨了这些处理方法中的某些步骤及处理顺序对湍流参数估算可能产生的影响,提出了综合后处理技术的准确性评估方法。该研究对于近岸海洋湍流混合、泥沙输运等重要问题的解决可以提供较为扎实的技术支持。  相似文献   

11.
The instantaneous turbulent velocity field created by the breaking of spilling regular waves on a plane slope was measured in a plane running parallel to the slope using particle image velocimetry. The measurement plane was located at a height of about 1 mm above the bed. The measurement area encompassed the region where the large eddies generated at incipient wave breaking impinged on the bottom inside the surf zone. A total of 30 trials were conducted under identical experimental conditions. In each trial, six consecutive wave cycles were recorded. The measured velocity fields were separated into a mean flow and a turbulence component by ensemble averaging. The instantaneous turbulent velocity fields were analyzed to determine the occurrence frequency, location, geometry and evolution of the large eddies, and their contributions to instantaneous shear stresses, turbulent kinetic energy and turbulence energy fluxes. The motion of single glass spheres along the bed was also investigated. The two-phase flow measurements showed that the velocity and displacement of large solid particles on a smooth bed were significantly affected by the magnitude and direction of turbulence velocities. Overall, this study has examined the kinematic and dynamic properties of large eddies impinging on the bed and the interaction of these large-scale turbulent flow structures with the mean flow. The study has also highlighted the important role of large eddies in sediment transport.  相似文献   

12.
《Coastal Engineering》2006,53(5-6):441-462
The structure of large-scale turbulence under a broken solitary wave on a 1 in 50 plane slope was studied. Three-component velocity measurements were taken at different heights above a smooth bed in the middle surf zone using an acoustic Doppler velocimeter. The measured data showed that turbulent velocity components were well correlated in the middle part of the water column. The velocity correlations could be produced by an oblique vortex similar to the obliquely descending eddy observed previously by other investigators. The vertical distributions of the relative values of the components of the Reynolds stress tensor showed that the structure of turbulence evolved continuously between the free surface and the bottom. The evolution was related to transition from two-dimensional to three-dimensional flow structures and the effect of the solid bottom on flow structures. Time histories of measured turbulent kinetic energy and turbulence stresses showed episodic turbulent events near the free surface but more sporadic turbulence in the lower layer. Large or intense turbulent events were found to have short duration and time lag relative to the wave crest point. These events also maintained good correlations between the turbulence velocity components close to the bottom.Instantaneous turbulent velocity fields were measured near the bottom at the same cross-shore location by using a stereoscopic particle image velocimetry system. These measurements showed that the near-bed flow field was characterized by large-scale, coherent flow structures that were the sources of most of the turbulent kinetic energy and turbulence stresses. The types of organized flow structures observed included vortices and downbursts of turbulence descending directly from above, lateral spreading of turbulent fluid along the bed, and formation of vortices in shear layers between fluid streams. A common feature of the organized flow structures near the bed was the large turbulence velocities in the longitudinal and transverse directions, which reflected the influence of a solid bottom on the breaking-wave-generated turbulence arriving at the bed.  相似文献   

13.
使用波潮仪、流速计以及浊度计现场测量记录海堤前的波高、潮高、流速和浊度值,与室内测定的浊度和水中悬浮颗粒物含量对应值比较,分析计算浊度与现场测量波高、潮高、流速水动力因素间的相关性,得出堤前泥沙起动的决定性水动力因素。在悬移质运移为主情况下,由于海堤的阻挡,波浪破碎产生的旋涡和紊动是泥沙起动的主要动力因素,泥沙起动量与波高值呈现较高相关性;海堤前复杂水动力条件中,波浪破碎前的流速值与悬移质泥沙起动量相关系数较小,启动流速的主要组成部分是破波产生的旋涡和紊动的流速。  相似文献   

14.
- Turbulent flow is a basic form of fluid motion widely observed in nature. In hydraulic engineering, especially in the study of sediment movement, turbulence is a key problem. In this paper, based on the stochastic theory of wall turbulence developed by the author and the results by other investigators, fluc-tuation and mean structures and drag coefficient for Newtonian and drag reduction flows in all states (laminar, transitional, turbulent) and in all regions (smooth, transitional, rough) are theoretically discussed in detail. General laws for laminar and turbulent flows obtained by the author are verified by the experimental results obtained by others, and there is good agreement between them.  相似文献   

15.
The self-similar turbulent density jump evolution has been studied in the scope of a turbulence closure modernized theory which takes into account the anisotropy and mutual transformation of the turbulent fluctuation kinetic and potential energy for a stably stratified fluid. The numerical calculation, performed using the equations for the average density and kinetic and potential energies of turbulent fluctuations, indicates that the vertical profiles of the buoyancy frequency, turbulence scale, and kinetic and potential energies drastically change when the turbulence anisotropy is strong. The vertical profiles of the corresponding energy and spatial discontinuity parameters, calculated at a weaker anisotropy, indicate that similar drastic changes are absent and a qualitative agreement exists with the known analytical solution, which describes the density jump evolution in a freshwater basin and was obtained previously [5, 8] in the scope of a turbulence local-similarity hypothesis applied in combination with the budget equation for the turbulent fluctuation kinetic energy.  相似文献   

16.
A laboratory study on the turbulence and wave energy dissipations of spilling breakers in a surf zone is presented. Instantaneous velocity fields of propagating breaking waves on a 1/20 slope were measured using Particle Image Velocimetry (PIV). Due to the large region of the evolving wave breaking generated turbulent flow, seven PIV fields of view (FOVs) were mosaicked to form a continuous flow field in the surf zone. Mean and turbulence quantities were extracted by ensemble averaging 25 repeated instantaneous measurements at each FOV. New results for distribution and evolution of turbulent kinetic energy, mean flow energy, and total energy across the surf zone were obtained from analyzing the data. The turbulence dissipation rate was estimated based on several different approaches. It was found that the vertical distribution of the turbulence dissipation rate decays exponentially from the crest level to the bottom. The resulting energy budget and energy flux were also calculated. The calculated total energy dissipation rate was compared to that based on a bore approximation. It was found that the ratio of turbulence dissipation rate to total energy dissipation rate was about 0.01 in the outer surf zone and increased to about 0.1 after the breaking waves transformed into developed turbulent bores in the inner surf zone.  相似文献   

17.
通过大尺度水槽波浪引起泥沙悬移的动床模型实验,研究了沙坝海岸破波带内水底悬沙浓度形成机理,通过比较时间平均水底悬沙浓度与时间平均水底波浪水质点动能或时间平均水底湍动能之间的相关性,论证了利用时间平均湍动能比利用时间平均波浪水质点动能计算时间平均水底悬沙浓度更为适用,并提出了以上时间平均水底悬沙浓度与水底湍动能之间的关系也可以用来近似表达时间变化的水底悬沙浓度与时间变化的水底湍动能之间的关系。研究针对规则波、波群和不规则波3种波浪形态进行,并分别对破波带内的爬坡区、内破波区和沙坝区3个区域实验结果进行讨论。  相似文献   

18.
Results are reported herein of an open channel flow laboratory based study of the development of ripples on a fine silica sand bed, and under non-uniform turbulent subcritical flow conditions. The hydraulic model used included a diverging channel, which resulted in a variation of hydraulic and sediment transport parameters along the channel. Sediment supply limitation occurred during experimentation, impacting bed form development. The overall aim of this study was to improve the understanding and modelling capability of the development of bed forms under limited sediment supply and non-uniform flow conditions. In particular, the applicability of an existing empirical model capable of predicting ripple development was tested for the conditions of this study, using measured ripple dimensions. The ripple height and length results were extracted from detailed bed profile records, obtained using an acoustic Doppler probe traversed longitudinally over the sediment bed, at various experimentation time intervals. It was found that the non-uniform flow conditions affected the development rate of the bed forms, while sediment supply limitation impacted their steady state dimensions. The measured steady state ripple dimensions were lower, on average, than the corresponding equilibrium dimensions predicted using existing empirical equations. Non-uniform flow also caused the simultaneous occurrence of bed forms at different stages of development along the hydraulic model, where 3D and 2D ripples and incipient bed forms were recorded. Such a scenario can occur in estuarine and coastal flows, due to changing hydraulic conditions and/or a limitation of sediment supply. The ripple development model tested was verified for the conditions of this study, with its accuracy being shown to depend on an accurate determination of steady state parameters.  相似文献   

19.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

20.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号