首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Offshore oil and gas exploration are gradually heading toward the deep sea and even the ultra-deep sea. According, the working temperature and pressure intensity of subsea oil and gas pipelines have increased by a considerable degree. This situation is accompanied by the global buckling problem in deep sea pipelines, which has become increasingly common. Meanwhile, ordinary single-layer pipelines cannot last for a long time under harsh deep-sea working conditions. Thus, multilayer pipelines, such as the pipe-in-pipe (PIP) structure and bundled pipelines, have gradually become top choices. However, the global buckling mechanisms of these multilayer pipelines are more complicated than those of single-layer pipelines. The sleeper–snake lay pipeline, which is an active control method for global buckling, was used in this study. The change and development laws of global buckling in a PIP structure at different wavelengths and amplitudes were determined through an experimental study. A dynamic solution method that considers artificial damping was adopted to establish finite element global buckling models of a PIP structure with initial imperfections. The effects of various factors, such as pipeline laying shape, sleeper–pipe function, and seabed–pipe function, on global buckling were analyzed. By the result of finite element method analysis, the initial imperfection, and sleeper–pipeline friction were determined to be the key factors that influenced critical pipeline buckling force. Accordingly, a reference for the design of PIP structures is presented.  相似文献   

2.
Offshore pipelines are usually buried to avoid damage from fishing activities and to provide thermal insulation. Provided that the buried pipelines are sufficiently confined in the lateral direction by the passive resistance of the trench walls, they may be subject to vertical buckling caused by a rise in temperature. Vertical buckling is usually called upheaval buckling because the heated pipeline is assumed to move upwards conventionally. However, the seabed may be very soft, especially where a pockmark or abyssal ooze appears. Consequently, under thermal compressive force, the pipeline may buckle downward and penetrate into the seabed because the downward soil resistance is small. In this study, we extended an analytical solution for vertical pipeline buckling on a rigid seabed to a soft seabed, and the effects of soil resistance on pipeline stability, buckling mode and amplitude are illustrated and analyzed.  相似文献   

3.
基于ABAQUS的海底管道静水压溃压力的敏感性分析   总被引:1,自引:0,他引:1  
局部屈曲压溃是海底管道发生稳定性破坏的一种形式,随着管道的刚度相对越来越柔,厚度相对越来越薄,管道发生屈曲压溃的问题也越来越突出。运用ABAQUS有限元分析软件进行管道的非线性屈曲分析,确定不同径厚比、初始椭圆度、轴向拉力和弯矩作用下的管道静水压溃压力,以分析静水压溃压力对这些因素的敏感性。  相似文献   

4.
运输高温高压油气的海底管道会发生整体热屈曲现象。管道热屈曲过程中可能会产生平衡状态的跃迁(snapthrough),且这样的跃迁过程必然会伴随着动力响应。管道热屈曲动力过程中侧向弹出的速度以及轴向缩进的速度对管土相互作用参数的取值有很大影响,然而关于管道热屈曲动力过程的研究却很少。本文给出了数值模拟过程中管道系统阻尼值和升温速率的确定方法,研究了管道初始几何缺陷以及海床参数对管道热屈曲动力过程的影响。  相似文献   

5.
With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.  相似文献   

6.
采用卷管法进行海底管道铺设过程中,管道首先通过牵引作用上卷于卷筒进行储存。管道与卷筒发生非线性接触,可能会产生复杂的塑性变形和局部屈曲。通过全尺寸柔性管力学性能试验获得柔性管轴力—应变以及弯曲—曲率等非线性力学性能关系,将试验所得的非线性材料性能参数导入建立的两种柔性管上卷ABAQUS有限元模型(梁—实体单元模型与壳和桁架—实体单元模型),实现柔性管较大轴向抗拉刚度和较小抗弯刚度的同步模拟以及管道与卷筒的非线性接触响应特征。通过对比分析两种有限元模型数值模拟得到的管道弯矩、弯曲曲率、管道轴力、管道与卷筒的接触压强等数据,发现在管道上卷过程中管道沿副法线方向的SM3弯矩占据其弯曲变形主导地位;管道与卷筒之间的摩擦效应对于管道轴力的影响较为显著;管道与卷筒的最大接触压强主要发生在卷管过渡段区域。  相似文献   

7.
为了探索不同径厚比海底管道的压溃屈曲特性,本文分别采用挪威船级社(Det Norske Veritas,DNV)规范、有限元模拟和深海压力舱模型试验,研究不同径厚比海底管道承载外部水压的能力,并就DNV规范压溃屈曲计算公式对不同径厚比管道的适用性进行了讨论,优化了小径厚比海底管道压溃屈曲的设计方法。研究表明:小径厚比管道的压溃屈曲临界压力对管道径厚比的变化更敏感;DNV规范计算小径厚比管道的压溃屈曲临界压力偏小,在进行深海管道的压溃屈曲设计时,建议采用模型试验结合有限元模拟的方法,计算管道实际可提供的压溃屈曲承载力。  相似文献   

8.
鉴于海底管道的服役水深越来越深,主要采用犁式挖沟机对预铺设于海床之上的海底管道采取后挖沟的方式将海底管道埋设于海床之下,以保护其免受不必要的损伤。针对后挖沟深度H是海底挖沟机的重要设计参数,也是影响管道悬跨的重要因素的问题,对SMD(UK)犁式挖沟机展开参数优化,确保作业过程中悬跨段管道在外部静水压力作用下,海底管道不会发生屈曲破坏。采用ABAQUS软件,分别建立了作业前和作业中两种工况下的悬跨模型,分析机械手对接触部分管道的损伤,结果显示,作业中的机械手对悬跨管道的损伤更大;同时,建立了作业中不同管径下,后挖沟深度对管道损伤的安全裕量关系曲线。进一步,结合作业中不同挖沟深度下的管跨段屈曲数值模型,对处于外部静水压力作用下的悬跨管的屈曲失效展开分析,结果显示,随着后挖沟深度的加大,不同管径下的悬跨段管道局部出现塑性压溃的临界压力值不断降低;管道外径的增大,降低了同一后挖沟深度下发生屈曲失效的压力值。最后,在后挖沟深度与外部静水压力组成的区域内,建立屈曲失效临界关系曲线,并划分出工作区和压溃区,为深海管道后挖沟埋管的施工提供工程参考。  相似文献   

9.
Accurate assessment of pipe-soil interaction under cyclic wave actions is of pronounced importance for the stability analysis of submarine pipelines in sandy seabed. This paper presents a plane-strain numerical study on such a problem using a finite element program DBLEAVES, which incorporates an elasto-plastic soil model that is capable of capturing the cyclic mobility behavior of sandy soils under cyclic loadings. A detailed validation against analytical solution and model test results was provided to demonstrate the robustness of the present numerical model to mimic both pre- and post-liquefaction behavior of sands, before an extensive parametric study was introduced. It was found that the accumulation of excess pore pressure in the vicinity and far field of a pipeline was strongly affected by the existence of it, with an influential range of about two pipe diameters. The influences of wave and seabed properties (e.g. relative densities) on the uplift response of pipelines were then investigated, based on which an explicit model was developed to quantify the degradation effect of waves on the uplift bearing capacity of pipelines against thermally-induced buckling.  相似文献   

10.
The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.  相似文献   

11.
This paper reports the results from three-dimensional dynamic finite element analysis undertaken to provide insight into the behaviour of the fish and OMNI-max dynamically installed anchors during loading in crust-over-soft clay sediments. Particular attention was focused on the situations where the anchor is embedded to a shallow depth during dynamic installation due to the strong crust layer. Large deformation finite element analyses were carried out using the coupled Eulerian-Lagrangian approach, incoporating the anchor chain effect. Parametric analyses were undertaken varying the initial embedment depth, anchor shape, loading angle, strength ratio between the top and bottom layers. The tracked anchor trajectory confirmed that the diving potential of the fish and OMNI-Max anchors were enhanced by the presence of the crust layer as that somewhat restircted the upward movement. This will be beneficial for many hydrocarbon active regions with layered seabed sediments where the anchor embedment depths during dynamic installation are expected to be low.  相似文献   

12.
In engineering practice, a cover layer of coarser material has been used to protect a buried marine pipeline from wave-induced seabed instability. However, most previous investigations of the wave–seabed–pipe interaction problem have been concerned only with such a problem either in an isotropic single layer or a rigid pipe. This paper proposes a two-dimensional finite element model by employing the principle of repeatability to investigate the wave-induced soil response around a buried pipeline. The elastic anisotropic soil bahavior and geometry of cover layer are included in the present model, while the pipe is considered to be an elastic medium. This study focuses on the effects of a cover layer (including thickness B and width W of the cover layer) on the wave-induced pore pressure in the vicinity of a buried pipeline.  相似文献   

13.
武行  赵海盛  李昕 《海洋工程》2021,39(3):72-82
在深海环境中,海底管线不仅承受较高外压,还会因为海水及运输介质的常年侵蚀而形成腐蚀缺陷,而腐蚀缺陷往往会导致管道的外压承载力下降。基于壳体稳定性理论,建立了含有非对称局部壁厚减薄管道在外压作用下的屈曲压力理论公式。公式具有广泛的适用性,当内、外局部壁厚减薄深度相等时,可用于计算含有对称局部壁厚减薄管道屈曲压力,而当内部或外部缺陷深度为零时,便可用于计算只含外部或者内部腐蚀缺陷的管道屈曲压力。通过有限元分析验证了该公式的正确性,结果表明公式可以准确预测不同缺陷位置及尺寸时管道的屈曲压力。详细研究了局部壁厚减薄缺陷位置、长度和深度等参数对屈曲压力的影响。研究表明,局部腐蚀对管道的屈曲压力产生重要影响,尤其当腐蚀角度和深度较大时,在腐蚀形成初期就会造成管道的承载力急剧下降,并且管道的屈曲压力与缺陷的径向位置有关,腐蚀缺陷位于管道外侧时的屈曲压力明显大于其位于管道内侧时的屈曲压力。  相似文献   

14.
双拱初始缺陷海底管线水平向整体屈曲数值模拟分析   总被引:1,自引:0,他引:1  
为了研究具有双拱反对称初始缺陷海底管线的整体屈曲特性,采用模态分析法将最可能出现的缺陷形态引入数值分析模型中。针对管线在高温高压作用下发生整体屈曲的动态变形特征,运用显式动力数值模拟方法研究了管线整体屈曲过程中水平向变形与轴向变形随温度和内压的变化规律,建立了在整体屈曲过程中屈曲管段与滑动管段轴力的变化过程与初始缺陷形态的关系。将数值模拟结果同经典解析解和室内模型实验结果进行对比,验证了本方法的可靠性。工程算例的分析结果表明,管线整体屈曲的发生是一个由低阶向高阶发展的过程,具有双拱缺陷的管线首先发生二阶模态的整体屈曲,而后过渡到四阶模态;管线整体屈曲的变形包括屈曲段的水平向变形和滑动管段的轴向缩进,其中水平变形释放了管壁内的轴力,轴力的释放量随初始缺陷尖锐程度的降低而增大;轴向缩进变形由于受到地基土的摩阻力使滑动管段内的轴力发生累积,轴力的累积量随初始缺陷的尖锐程度的降低而增加。以上研究成果对指导实际工程具有现实意义。  相似文献   

15.
The safety of offshore pipeline has drawn a great deal of attention during deepwater installation due to the combined actions of high external pressure, axial tension, and bending moment. Meanwhile, the pipeline configuration has a remarkable effect on the structural behaviour of the tube. The special studies focus on the deepwater S-lay technique in the present paper. The stiffened catenary theory is applied to establish the static equilibrium governing differential equation of a pipe element, and the solution equations of the total pipeline configuration from a lay-barge over a stinger to the seabed are derived. The numerical iteration method for solving pipeline configuration is described in detail, and the corresponding program is developed to conduct the analysis of effects of various parameters such as laying water depth, pipe diameter, thickness of concrete weighted coating layer, stinger length, control strain, and axial tension on pipeline configuration. The results show that the laying water depth, the submerged weight of the pipe, and the axial tension are the critical factors influencing pipeline configuration. In addition, geometrical parameters of the stinger such as length, radius, and shape have an important effect on the pipe-laying capacity of the vessel. The validity of the program is further verified by means of a comparison with results obtained from the commercial finite element software OFFPIPE.  相似文献   

16.
波浪作用下孔隙海床-管线动力相互作用分析   总被引:1,自引:0,他引:1  
波浪作用下海床中的孔隙水压力与有效应力是影响海底管线稳定性的主要因素。然而,在目前的海床响应分析中一般将管线假定为刚性,并不能合理地考虑海床与管线之间的相互作用效应,同时也没有考虑土体和管线加速度对海床动力响应的惯性影响,从而无法确定由此所引起的管线内应力。为此考虑管线的柔性,分别采用饱和孔隙介质的Biot动力固结理论和弹性动力学理论列出了海床与管线的控制方程,进而采用摩擦接触理论考虑海床与管线之间的相互作用效应,基于有限元方法建立了海床-管线相互作用的计算模型及其数值算法。通过变动参数对比计算讨论了管线几何尺寸、海床土性参数对波浪所引起的管线周围海床孔隙水压力和管线内应力的影响。  相似文献   

17.
Nonlinear Static Finite Element Stress Analysis of Pipe-in-Pipe Risers   总被引:4,自引:1,他引:4  
Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static finite element stress analysis of the PIP riser system. The finite element (FE) model of the PIP riser system is built via software AutoPIPE 6.1. According to the specialties of a variety of components in the PIP riser system, different elements are used so as to model the system accurately. Allowing for the complication in modeling the effects of seabed restraint, a technique based on the bilinear spring concept is developed to calculate the soil properties. Then, based on a pipeline project, the entire procedure of stress analysis is discussed in detail, including creation of an FE model, processing of input data and analysis of results. A wide range of loading schemes is investigated to ascertain that the stresses remain within the acceptable range of the pipe material strength. Finally, the effects of the location of flanges, the thermal expansion of submarine pipelines and the seabed restraint on stress distribution in the riser and expansion loop are studied, which are valuable for pipeline designers.  相似文献   

18.
This paper proposes an analytical solution for determining the initial post-buckling behaviour of submerged slender vertical steel structures. These structures may have significant bending stiffness and self-weight so that the axial force varies linearly from one end to the other. Such structures constitute main components of drilling and production platforms used for the offshore exploitation of hydrocarbons. An understanding of their structural behaviour after buckling offers opportunities for cost reduction and design optimisation. The initial post-buckling behaviour is evaluated by retaining non-linear curvature terms and using an expansion in series to reduce the governing equation to a set of linear ordinary fourth order differential equations, which are then solved sequentially by power series functions. The paper also presents results from buckling and non-linear large deflection finite element analyses. The numerical results validate and establish a range of application for the analytical formulation. This solution technique is employed to explore the behaviour of slender structures dominated by geometrical (tension) or flexural stiffness.  相似文献   

19.
With the increase in demand and supply gap in the oil and gas industry, new developments of oil and gasinfrastructure are moving into deeper water. This requires design and construction of long high temperature and high pressure pipelines from deep sea to shore. These pipelines are subjected to cyclic expansion during operating cycles. Accumulated axial movement due to repeated thermal cycles may lead to global displacement referred to as ‘walking’. Walking rates depend on the restraint associated with seabed friction. In conventional analyses, seabed friction is independent of the rate of thermal loading and expansion but it has been recognised that the sliding resistance between a pipe and the seabed varies with velocity, partly due to drainage effects. In this paper a numerical model is used to explore the effect of velocity-dependent seabed friction. A velocity-dependent friction model is implemented in commercial software ABAQUS and validated via single element and simple (flat seabed) pipeline cases. This model features upper and lower friction limits, with a transition that occurs as an exponential function of velocity. A parametric study is performed using differing rates of heating and cool-down in walking situations driven by seabed slope, SCR end tension and the difference between heat up and cool down rates. The walking behaviour is compared to cases with constant friction and solutions are proposed to express the velocity-dependent response in terms of an equivalent constant friction. These equivalent friction values can then be applied in existing simple solutions or more complex numerical analyses, as a short cut method to account for velocity-dependent friction.  相似文献   

20.
Submarine pipelines are the primary component of an offshore oil transportation system. Under operating conditions, a pipeline is subjected to high temperatures and pressures to improve oil mobility. As a result, additional stress accumulates in pipeline sections, which causes global buckling. For an exposed deep-water pipeline, lateral buckling is the major form of this global buckling. Large lateral displacement causes a very high bending moment which may lead to a local buckling failure in the pipe cross-section. This paper proposes a lateral global buckling failure envelope for deep-water HT/HP pipelines using a numerical simulation analysis. It analyzes the factors influencing the envelope, including the thickness t, diameter D, soil resistance coefficient μ, calculating length Lf, imperfection length L and imperfection amplitude V. Equations to calculate the failure envelope are established to make future post-buckling pipeline failure assessment more convenient. The results show that (1) the limit pressure difference pmax (the failure pressure difference for a post-buckling pipeline when it suffers no difference in temperature) is usually below the burst pressure difference pb (which is the largest pressure difference a pipeline can bear and is determined from the strength and sectional dimensions of the pipeline) and is approximately 0.62–0.75 times the value of pb and (2) thickness t has little influence on the normalized envelopes, but affects pmax. The diameter D, soil resistance coefficient μ, and calculating length Lf influence the maximum failure temperature difference Tmax (the failure temperature difference for a pipeline suffering no pressure difference). The diameter D also significantly affects the form of the normalized envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号