首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The Lianhuashan tungsten deposit occurs in the volcanic terrain in the coastal area of Southeast China,where rhyolite,quartz porphyry and granite consitute a complee magmatic series.The orebodies are located in the endo-and exo-contacts between the quartz porphyry and the metasandstone of the Xiaoping coal measues.Hongenization temperatures of melt inclusions in zircon and quartz are 1100℃and 1050℃ for rhyolite,1000℃ and 860℃for quartz porphyry,and 950-1000℃and 820℃ for granite,respectively,demonstrating that the rockforming temperatures dropped successively from the eruptive to the intrusive rocks and that the homogenization temperatures of melt inclusions in zircon are 50-180℃higher than those in quartz.Homogenization temperatures of gas-liquid inclusions in quartz are 230-520℃(mostly 230-270℃)for quartz porphyry,200-450℃(mostly 200-360℃)for ore-bearing quartz veins,150-210℃for granite 170-200℃ for the vein quartz in it.Quartz from the quartz porphyry and from the ore-earing quartz veins show similar characteristics in inclusion type and homogenization temperature,indicating that intergranular solutions must have been formed upon cooling of magma and that ore-forming solutions for the tungstem mineralization were evolved mainly from ore-bearing intergranular solutions in the quartz porphyry.  相似文献   

2.
This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.  相似文献   

3.
The Pinxiang weathering profile is well developed on Early Triassic dacite lavas of the Baisi Formation. At the top of the profile is developed a red clay zone which is characterized mineralogically by kaolinite, iron oxide minerals, quartz, and a small amount of illite, montmorillonite and vermiculite. In going downwards the red clay zone gives way to a saprolite zone in which plagioclase pseudomorphs have been well preserved although replaced by kaolinite. Beneath the saprolite zone is the saprock zone characterized by less weathering for dacite. At the bottom of the weathering profile is the parent material, dacite, which is composed mainly of plagioclase, quartz, K-feldspar and biotite which have been largely altered into chlorite owing to submarine extrusion of dacite lavas. Some layers in the weathering profile show obvious sodium enrichment and potassium depletion relative to others. In the Al2O3-(CaO* Na2O)-K2O triangular diagram, the weathering trends of these layers in the middle stage are remarkably deviated from normal ones. Both mineralogy and micro-morphology of these layers indicate such deviation resulted from sodic metasomatism of orthoclase.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987112000357   总被引:1,自引:0,他引:1  
Field and remote sensing studies reveal that Au-bearing quartz±carbonate lodes in Romite deposit,in the extreme South Eastern Desert of Egypt,are controlled by NNE-striking shear zones that splay from the ca.660—550 Ma Hamisana Zone.Quartz in releasing bends with sinistral shear geometry and abundant boudinaged quartz-carbonate lodes with serrate ribboned fabrics suggest vein formation throughout a transpressive wrench system.Ubiquitous hydrothermal quartz,carbonate,and subordinate chlorite and sericite within the shear zones and as slivers in veins,indicate that gold deposition and hydrothermal alteration occurred under greenschist fades conditions.The Al(Ⅳ) in chlorite indicates a formation temperature of~300℃.comparable with temperatures estimated from arsenopyrite composition for grains intimately associated with gold in quartz veins. The new geological and geochemical data indicate that splays off the Hamisana Zone are potential gold exploration targets.Quartz veins along the high order(2nd or 3rd) structures of this crustal-scale shear zone are favorable targets.In the Romite deposit and in surrounding areas,a Au-As-Cu-Sb-Co-Zn geochemical signature characterizes mineralized zones,and particularly rock chips with>1000 ppm As and high contents of Cu,Zn,and Co target the better mineralized areas. The carbonateδ13Cpdb andδ18OSmow isotope signatures preclude an organic source of the ore fluid,but metamorphic and magmatic sources are still valid candidates.The intense deformation and lack of magmatism in the deposit area argue for metamorphic dewatering of greenstone rocks as the most likely fluid source.The narrow ranges ofδ13C(-4.6‰to -3.1‰) andδ18O(11.9‰-13.7‰) in carbonate minerals in lodes imply a corresponding uniformity to the ambient temperature andδ13CCO213C∑C) of the ore fluids. The calculatedδ18Oh2o values of 6.9‰—7.9‰for ore fluids,based onδ18O values of vein quartz further suggest a likely metamorphic origin.  相似文献   

5.
Discriminations in a local chemical,fluidal,mechanical and thermal processes in a shear zone will lead to metallogenic differentiation in a local section.This paper,based on the general geological setting of the Shibangou gold deposit in Xixia,Henan,deals with petrological and petrochemical samples of altered rocks in the metallogenic section and of mylonites in the non-metallogenic section of a selected shear zone.The discriminations in fluid-rock interaction and petrological mass balance between altered rocks near the orebody and mylonites in the shear zone are discussed as well.The results show that the petrological volume of altered rocks in the metallogenic section of the shear zone is almost always dilatant and the mylonite volume in the non-metallogenic section is almost always lost.Major elements in altered rocks from the metallogenic section and in mylonites from the non-metallogenic section always show a tendency of being enriched and depleted,respectively.Fluid-rock ratios in the mylonites(Nu=93.68-468.40)are larger than those of the altered rocks(NC(Ⅳ)^s=36.11-216.67).The gain and loss of major and trace elements from the altered rocks and mylonites in the shear zone are a composite process to be imported and exported by percolating fluids as well as of the loss and dilatancy of rock volume.  相似文献   

6.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

7.
The Ciemas gold deposit is located in West Java of Indonesia,which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate.Two different volcanic rock belts and associated epithermal deposits are distributed in West Java:the younger late Miocene-Pliocene magmatic belt generated the Pliocene-Pleistocene epithermal deposits,while the older late Eocene-early Miocene magmatic belt generated the Miocene epithermal deposits.To constrain the physico-chemical conditions and the origin of the ore fluid in Ciemas,a detailed study of ore petrography,fluid inclusions,laser Raman spectroscopy,oxygen-hydrogen isotopes for quartz was conducted.The results show that hydrothermal pyrite and quartz are widespread,hydrothermal alteration is well developed,and that leaching structures such as vuggy rocks and extension structures such as comb quartz are common.Fluid inclusions in quartz are mainly liquid-rich two phase inclusions,with fluid compositions in the NaCl-H20 fluid system,and contain no or little CO_2.Their homogenization temperatures cluster around 240℃-320℃,the salinities lie in the range of 14-17 wt.%NaCl equiv,and the calculated fluid densities are 0.65-1.00 g/cm~3.The values of δ~(18)O_(H2O-VSMOW)for quartz range from +5.5‰ to +7.7‰,the δD_(VSMOW) of fluid inclusions in quartz ranges from-70‰ to-115‰.All of these data indicate that mixing of magmatic fluid with meteoric water resulted in the formation of the Ciemas deposit.A comparison among gold deposits of West Java suggests that Miocene epithermal ore deposits in the southernmost part of West Java were more affected by magmatic fluids and exhibit a higher degree of sulfldation than those of Pliocene-Pleistocene.  相似文献   

8.
The Yinyan porphyry tin deposit is a blind deposit associated with a small granite porphyry stock.The petrology and geochemistry of the Yinyan granite porphyry suggest that it is genetically of the transfor-mation type,emplaced at the late stage of fractional crystallization within a high-level magma chamber.Ore-forming fluids are derived predominantly from the granitic magma and they interact with the wall rocks intensely when finding their way upwards through the granite porphyry.From the lower part of the porphyry upwards the following alteration zones can be distinguished(a)slightly altered granite porphyry (with weak potash feldspathization),(b)protolithionite-quartz greisenization zone,(c)to-paz-quartz greisenization zone,(d)senicite-quartz sericitization zone,and (e)silicification zone (quartz core at the surface).Tin mineralization is related to greisenization,especially to topaz-quartz greisenization.Rock and ore-forming temperatures and oxygen fugacities are estimated,respectively.There are significant differences in many aspects between the Yinyan porphyry tin deposit and volcan-ic-subvolcanic porphyry tin deposits.  相似文献   

9.
According to the differences in ore-controlling structural systems and the characteristics of host rocks, textures and structures of ores and mineral associations of ores, quartz vein-type gold deposits in the Rushan area can be divided into the Rushan and Tongling styles. Rushan style gold deposits, occurring in the Kunyushan complex, include Rushan, Tangjiagou and Tongxishan gold mines. They are distributed along four NNE-trending and sinistral, compresso-shear faults with a right stepping array. A prominent characteristic of the gold mineralization is that the orebodies in neighbouring gold deposits distributed in a single ore-controlling fault zone take opposite pitches. Study of the locating structures of the quartz vein gold deposits shows that the Rushan-style gold deposits are characterized by NNE and NE zoning. Therefore, the intersections of the NE direction of the known gold deposit and the neighbouring NNE-trending fault zones are favourable for looking for gold deposits, and the ends of the  相似文献   

10.
There are obvious differences in the mineral assemblage and metamorphic P-T conditions between the eclogites from the northern and southern parts of the eastern Dabie Mountains. Those from the northern part of the mountains are developed in Alpine peridotite and gneiss. They have a mineral assemblage of garnet+diopside with no quartz, and were formed at temperatures of 600℃-740℃. Those from the southern part are developed in gneiss and marble. They consist of garnet+omphacite+less quartz and were metamorphosed at temperatures in the range of 650°-800℃. These differences suggest that the former may be formed during the metamorphism of the deep subducted oceanic crust, whereas the latter may be genetically related to the subduction of the continental crust in this area.  相似文献   

11.
The Hatugou-Qingshuiquan-Gouli ductile shear zone recorded multiple cycles of orogeny in the eastern section of East Kunlun. The quartz c-axis fabric and microstructure of samples from the ductile shear zone were analyzed. We discussed the formation mechanism of subducted and crust extension-thinning of continental blocks in the eastern section of East Kunlun. Analysis results show that the deformation temperature of the ductile shear zone was between 380℃ and 650℃, which can be analogue with metamorphisms of middle-high greenschist facies to lower amphibolite facies. The differential stress and strain rate of the ductile shear zone are estimated at 173-509 MPa, 6.93×10-14-1.43×10-8 s-1, respectively, which suggest a possible origin of rapid subduction. Moreover, the deformation temperature, differential stress and strain increase toward the middle of East Kunlun fault zone, which is consistent with the fact that the middle part of the East Kunlun experienced the most intensive ductile shear deformation. The calculations of the kinematic vorticity values of the ductile shear belt show that the early transient kinematic vorticity (0.56-1.00) of ductile shear zone corresponds to the initial stage of the northward subducted southern parts of East Kunlun. In the middle to later stage, the kinematic vorticity (0.25-0.91) should correspond to the collision between southern and northern parts of East Kunlun. The latest C' instantaneous kinematic vorticity (0.19-0.51) corresponds to extensional stage in the post-orogenic setting. The quartz c-axis fabric and the structural characteristics show that the middle part of East Kunlun tectonic belt experienced at least 3 stages of tectonic movements, including the late Caledonian thrusting and left lateral strike slip shearing, the late Hercynian Indosinian thrusting and dextral strike slip shearing and the brittle ductile brittle-left lateral strike slip shearing in the early and later Yanshanian. ©, 2015, Science Press. All right reserved.  相似文献   

12.
Auriferous quartz veins in the Bankuan gold deposit occur in the interlayer broken zone of the basal conglomerate of the Tietonggou Formation or at the unconformity between the Tietonggou Formation and the crystalline basement.The composition of fluid inclusions in the minerals indicates that the nature and composition of ore-forming hydrothermal solutions show a drastical change soon after the solutions reached the Tietonggou Formation from the crystalline basement,resulting in gold precipitation.So the Bankuan gold deposit can be assigned to the conglomerate stata-bound-type deposits.137 thermometric data are concentrated in the three ranges 400-340℃,330-220℃ and 180-160℃,representing three episodes of metalogenesis,Oxygen isotope studies demonstrate the evolution of ore-forming hydrothermal solutions from early metamorphic to late meteoric,Diversity of ore-forming materials dominated by deep-source material is supported by sulphur and lead isotope data.From the above discussions it may be concluded that the deposit formed by metamorphism induced as a result of Mesozoic northward intracontinental subduction along the Machaoying fault.  相似文献   

13.
The precipitation of authigenic quartz plays a significant role to reduce the reservoir characteristics and enhance the stiffness of the rock.The Es1 sandstone of Shahejie Formation is acting as a significant hydrocarbon producing rock in the Nanpu Sag.Various methods like thin section petrography,cathodoluminescence(CL),scanning electron microscope(SEM,with EDS),and electron microprobe analysis has been used to reveal the origin of quartz cement as well as to evaluate the effect of quartz cement on reservoir quality.The studied sandstone is classified as immature to mature feldspathic litharenite and lithic arkose and consists of quartz,feldspar,rock fragments and micas.Petrographic studies and SEM analysis shows that the authigenic quartz is acting a significant cement that reduces the reservoir quality.Whereas clay minerals(kaolinite and mixed layer illite to smectite)are dominant in the Es1 sandstone,that can reduce the reservoir quality.SEM,CL and thin section analysis reveal that there are two stages of quartz cement in the studied samples;that are pore filling authigenic cement and quartz overgrowth cement.Fluid inclusion homogenization temperatures shows that stages of quartz cement were developed with continuous process from 70℃ to 130℃.Quartz cements were generally originated from I/S reaction,feldspar dissolution,conversion of rock fragments and pressure solution.Feldspar dissolution(K-feldspar)and kaolinite to illite reaction is an insignificant silica source for the silica cement which is internally precipitated in a close system with diffusion transporting mechanism.Overall,quartz cement significantly enhance the rock strengthen and brittleness effectively as well as it reduce the overall reservoir quality.  相似文献   

14.
The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt.The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E-W and NE-SW trending fracture zones.The main ore minerals are galena, sphalerite,pyrite.chalcopyrite.tetrahedrite and gold.Homogenization temperatures of fluid inclusions are between 130 and 295℃ for quartz and between 90 and 133℃ for sphalerite.Sulphur isotope values obtained from pyrite,galena and sphalerite vary between 1.2‰ and 3‰.indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region.Oxygen isotope values are between 15.0‰ and 16.7‰ and hydrogen isotope values are between -87‰ and -91‰ The sulphur isotope thermometer yielded temperatures in the range of 244-291℃ for the ore formation.Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction- related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian.  相似文献   

15.
The Dongshengmiao Pb-Zn deposit located in the Mesoproterozoic aulacogen in a passive continental margin in the north- west margin of the North-China Craton is widely considered to be a untypical SEDEX deposit.Recently,new types of mineralization such as chalcopyrite veins and re-crystallized sphalerite ores with visible hydrothermal alteration have been found in the deposit at depth.In this paper we report the decrepitation temperatures of fluid inclusions in chalcopyrite,sphalerite and quartz from these new types of ores.The decrepitation temperatures of fluid inclusions in chalcopyrite(4 samples),sphalerite(2 samples)and quartz(5 samples)are 303~456℃,97~497℃,146~350℃and 350~556℃,respectively.The decrepitation temperatures of fluid inclusions in the vein-type chalcopyrite are similar to the decrepitation temperatures of fluid inclusions in chalcopyrite from the Hercynian Oubulage porphyry Cu-Au deposit(313~514℃)and the Chehugou porphyry Cu-Mo deposit(277~485℃),supporting our interpretation that the Dongshengmiao deposit was overprinted by magmatic hydrothermal mineralization.The decrepitation temperatures of fluid inclusions in re-crystallized sphalerite from the Dongshengmiao deposit are characterized by two peaks,97~358℃and 358~497℃.The decrepitation temperatures of fluid inclusions in quartz in ehalcopyrite veins from the Dongshengmiao deposit are also characterized by two peaks,146~350℃and 350~556℃.The lower and higher temperature peaks in both cases are considered to represent two separate mineralization events,original SEDEX mineralization and magmatic hydrothermal overprinting,respectively.The higher decrepitation temperatures of fluid inclusions in quartz and sphalerite from the Dongshengmiao deposit are similar to the decrepitation temperatures(340~526℃)of fluid inclusions in sphalerite from the Baiyinnuoer skarn-type Pb-Zn deposit in the region. Replacement of pyrite by sphalerite and overgrowth of chalcopyrite on pyrite in the Dongshengmiao support our interpretation that the original SEDEX mineralization was overprinted by magmatic hydrothermal activity in the deposit.Our results suggest that there may be separate porphyry and skarn-type deposits related to Hercynian magmatism and associated hydrothermal activities in the Langshan area, which are potential exploration targets in the future.  相似文献   

16.
The Nianzha gold deposit,located in the central section of the Indus-Yarlung Tsangpo suture(IYS) zone in southern Tibet,is a large gold deposit(Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision(~65-41 Ma).The main orebody is 1760 m long and 5.15 m thick,and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south.High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange.The wall-rock alteration is characterized by silicification in the fracture zone,serpentinization and the formation of talc and magnesite in the ultramafic unit,and chloritization and the formation of epidote and calcite in diorite.Quartz veins associated with Au mineralization can be divided into three stages.Fluid inclusion data indicate that the deposit formed from H_2O-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt%NaCl equivalent.The quartz veins yield δ~(18)O_(fluid) values of 0.15‰-10.45‰,low δD_(V-SMOW)values(-173‰ to-96‰),and the δ~(13)C values of-17.6‰ to-4.7‰,indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids.The pyrite within the diorite has δ~(34)S_(V-CDT) values of-2.9‰-1.9‰(average-1.1‰),~(206)Pb/~(204)Pb values of 18.47-18.64,~(207)Pb/~(204)Pb values of 15.64-15.74,and ~(208)Pb/~(204)Pb values of 38.71-39.27,all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle.The presence of the Nianzha,Bangbu,and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits.We identified three types of mineralization within the IYS,namely Bangbu-type accretionary,Mayum-type microcontinent,and Nianzha-type ophiolite-associated orogenic Au deposits.The three types formed at different depths in an accretionary orogenic tectonic setting.The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.  相似文献   

17.
Well-developed dissolution pores occur in the dolomites of the Sinian Dengying Formation, which is an important oil and gas reservoir layer in the Sichuan Basin and adjacent areas in southern China. The pores are often filled with quartz, and some dolomites have been metasomatically altered to siliceous chert. Few studies have documented the characteristics, source or origin of silica-rich fluids and their effects on the dolomite reservoir. The peak homogenisation temperatures(T_h) of fluid inclusions in pore-filling quartz are between 150℃ and 190℃, with an average of 173.7℃. Gases in the inclusions are mainly composed of CO_2, CH_4 and N_2. Compared with host dolomite, pore-filling quartz and metasomatic chert contain higher amounts of Cr, Co, Mo, W and Fe, with average concentrations of 461.58, 3.99, 5.05, 31.43 and 6666.83 ppm in quartz and 308.98, 0.99, 1.04, 13.81 and 4703.50 ppm in chert, respectively. Strontium levels are lower than that in the host dolomite, with average concentrations in quartz and chert of 4.81 and 11.06 ppm, respectively. Rare earth element compositions in quartz and chert display positive Eu anomalies with a maximum δEu of 5.72. The δD_(SMOW) values of hydrogen isotopes in water from quartz inclusions vary from-85.1‰ to-53.1‰ with an average of-64.3‰, whereas the δ~(18)O_(SMOW) values range from 7.2‰ to 8.5‰ with an average of 8.2‰. The average ~(87)Sr/~(86)Sr ratios in quartz and chert are 0.711586 and 0.709917, respectively, which are higher than that in the host dolomite. The fluid inclusions, elemental and isotopic compositions demonstrate that the formation of quartz and chert was related to silica-rich hydrothermal fluid and that the fluid was the deep circulation of meteoric water along basement faults. Interactions with silica-rich hydrothermal fluids resulted in densification of dolomite reservoirs in the Dengying Formation through quartz precipitation and siliceous metasomatism. However, it increased the resistance of the host dolomite to compaction, improving the ability to maintain reservoir spaces during deep burial. Evidence for silica-rich hydrothermal activity is common in the Yangtze Platform and Tarim Basin and its influence on deep dolomite reservoirs should be thoroughly considered.  相似文献   

18.
The Bangbule skarn lead-zinc(Pb-Zn) deposit(>1 Mt Zn + Pb) is located in the western Nyainqentanglha polymetallic metallogenetic belt, central Tibet. Lenticular orebodies are all hosted in skarn and developed in the contact zone between the quartz porphyry and carbonate strata of the mid Paleozoic Middle to Upper Chaguoluoma Formation as well as in carbonate and sandstone beds of the Upper Paleozoic Laga Formation. As a newly discovered skarn deposit, the geological background and metallogene...  相似文献   

19.
There is a coupling of thermal, mechanical, chemical and fluidal processes in a continental shear zone. Both Xincheng-Xishui and Hetai shear zones are typical continental crust shear zones of greenschist facies environment. The representative mylonite zones of the shear zones are studied with whole rock major and trace element analyses. The chemical compositional variation tendencies in both shear zones are very similar and the gain-loss ratios of various components in the mylonitic rocks are reflected in the mass balance equations. The enrichment of those immobile high-field-strengh elements is considered to he related to the volume loss of the myionitic rocks in a shear zone. Based on the volume loss expression C_s/C_o=1/(1-V),the fractional volume losses (V)are 37.5% and 36.5%-42.3% respectively for mylonites and ultramylonites in the Xincheng-Xishui shear zone and 11% and 28% respectively for mylonites and phyllonites in the Hetai shear zone. The high volume loss and large removal of SiO_2 from  相似文献   

20.
The Kekesayi gold deposit is located in the Buergen ductile shear zone in the southern margin of Altay, Qinghe County, Xinjiang. The deposit consists of altered mylonite type and gold-bearing quartz veins type ores. The main ore-bearing rocks are gray metamorphic tuffs of the Tuoranggekuduke Formation. The ores are mostly lenticular and vein, and are strictly controlled by shear bands. Through field investigation, sample collection and laboratory identification, the structural alteration characteristics are studied in detail. The microstructure of quartz is analyzed by SEM cathodoluminescence (SEM-CL). The fluid inclusions of the deposit were studied by means of micro-temperature measurement and laser Raman analysis, and the tectonic-fluid evolution characteristics were discussed. Our results showed that: (1) The gold mineralization is closely related to the structural alteration of the ductile shear zone. The mylonitization, subgrain deformation and fluid structure are developed in the mining area. The recrystallized texture, dissolution structure and multistage composite shear structure characteristics of SEM-CL show that the deformation and metamorphism are very strong. The tectonic-hydrothermal activity resulted in strong silicification and pyritization and closely related to gold mineralization. (2) The fluid inclusions of quartz veins in the mineralized rocks are distributed in groups and the morphology of the fluid inclusions are mostly oval and tadpole in shape. The primary fluid inclusions are distributed in disorder, and the secondary fluid inclusions distribute linearly along the fissures mostly elongated owing to the strong tectonic deformation. Fluid inclusions are not of uniform size, generally are 8-20 μm. The types of inclusions can be classified according to the petrography and micro temperature measurement: two phase aqueous solution type (LH2O-VH2O), carbon-rich type (LH2O-LH2O) and single phase aqueous solution type (LH2O). The evolution of the fluid is characterized by high temperature, low salinity and rich CO2 in the early stage. As the deformation of the shear zone increases in the middle and late stages, the fluid evolved into low temperature, low salinity rich H2O. (3) The Kekesayi gold deposit has the characteristics of orogenic gold deposit, and the evolutionary characteristics of tectonic-ore forming fluids are consistent with the evolution of shear zones. Structural alteration of shear zone is the main controlling factor of mineralization. And magmatic hydrothermal alteration may also play an important role in mineralization. © 2018, Science Press. All right reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号