首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
在中国大陆科学深钻主孔中发现了2粒FeCrNi合金球粒,粒径约200μm,其中w(Fe)=71.07%~73.68%,w(Cr)=14.55%~16.79%,w(Ni)=9.91%~11.47%,总和为98.2%~99.65%,分子式为Fe0.74Cr0.16Ni0.10。球粒内均含氧化物包体,由Cr、Mn、Al、Si、Fe、Ti和O组成。X射线衍射分析表明,FeCrNi球粒为多晶,具立方晶系的晶体结构,空间群为Fm3m,晶胞参数为a=0.3603nm,Z=4,密度为7.828g/cm3。球粒经抛光后呈银灰色,金属光泽,平均莫氏硬度为4.026,主波长S546反射率为56%。球粒可能是FeCrNi合金组成的金属熔融液滴冷却的产物。  相似文献   

2.
建立了二氯甲烷溶剂辅助微波消解-电感耦合等离子体质谱法测定原油中V、Cr、Fe、Ni、Cu、Zn、Mo、Co、Pb等16种微量金属元素。研究表明,用CH2Cl2分散原油样品,以浓HNO3-H2O2为消解体系,采用CEM微波消解系统消解样品,各元素线性关系良好,相关系数≥0.9995;检出限可达ng/L;方法精密度较高,相对标准偏差(RSD,n=3)<5.0%;回收率为92%~110%。以w(Ni)/w(V)与w(Fe)/w(V)比值为变量参数对不同原油样品进行聚类分析,表明国内与国外不同地区原油样品中各金属元素含量差异较大。  相似文献   

3.
研究了以膨胀石墨为载体的金属复合材料的制备方法,制备出金属浓度可控的各种膨胀石墨-金属纳米复合材料。利用X射线衍射仪、扫描电镜分析仪等对该类复合材料的表面特性进行了测试实验和表征,发现复合材料中金属以纳米粒子的形式存在,并且均匀地分布在膨胀石墨表面。  相似文献   

4.
甘肃寨上金矿是我国重要的卡林型金矿床,发育多种特征的黄铁矿、毒砂、黝铜矿、黄铜矿等金属硫化物。黄铁矿贯穿整个地质过程,对其进行研究可深入理解成矿作用。观察发现,黄铁矿可分为3个世代。第1世代黄铁矿为莓球状黄铁矿(Py1A)和多孔海绵状黄铁矿(Py1B)2类;第2世代中粗粒自形黄铁矿(Py2);第3世代粗粒黄铁矿(Py3)。Py1A呈莓球状,直径介于10~50μm,w(Co)/w(Ni)小于1,w(S+As)/w(Fe)大于2,部分黄铁矿因受到热液改造,莓球中w(Co)/w(Ni)大于1,w(S+As)/w(Fe)小于2;Py1B呈多孔海绵状,w(Co)/w(Ni)大于1,w(S+As)/w(Fe)小于2。Py2呈中粗粒五角十二面体,w(Co)/w(Ni)介于1.41~3.78,w(S+As)/w(Fe)由内向外逐渐升高,介于1.93~2.02,w(Au)/w(As)介于0.023~0.108。Py3呈粗粒立方体晶,周围发育石英压力影,w(Co)/w(Ni)介于1.36~1.39,w(S+As)/w(Fe)介于1.98~2.00。结合地质背景分析认为,黄铁矿微晶直接聚集形成Py1A(莓球状),或在松散状态下经胶结作用形成Py1B(多孔海绵状),并遭受热液叠加改造。Py2(中粗粒五角十二面体)由含矿热液环绕多孔海绵状核部直接结晶形成,Py3(粗粒自形立方体)由晚期热液结晶形成,并同时遭受构造变形活动。该区黄铁矿的特征对于判别地质环境有标型意义。  相似文献   

5.
刘桂香  施璐 《矿物学报》2019,39(1):126-130
利用电镜能谱分析技术对董家沟组片麻岩和辽河群板岩、大理岩样品中10个黄铁矿主量元素进行分析,检测结果表明,以辽河群板岩样品为主的6个黄铁矿w(Fe)=56.30%~65.42%、w(S)=34.58%~43.70%,属于硫亏损性黄铁矿,形成于富铁贫硫环境;董家沟组片麻岩和辽河群大理岩的4个黄铁矿样品w(Fe)=40.61%~45.11%、w(S)=54.74%~59.39%,属于硫饱和性黄铁矿,形成于贫铁富硫环境。  相似文献   

6.
加速器质谱(AMS)是进行~(14)C同位素分析的主要技术手段,而高精度低本底加速器质谱~(14)C分析主要受样品制备技术限制,因此探讨如何提高石墨制备的稳定性和控制碳污染降低本底将有助于产出高质量~(14)C分析数据,突破~(14)C测年上限(约5.0万年),进一步拓宽~(14)C年代学和同位素示踪的应用范畴。本文详细阐述了催化还原法(H_2/Fe法、Zn/Fe法和Zn-TiH_2/Fe法)制备石墨样品的真空装置和主要工作原理,指出了微量样品石墨制备过程中同位素分馏、石墨产率、束流强度以及精密度与样品量之间存在严重的依赖关系及其抑制方法。着重探讨了石墨制备技术实验条件(还原剂、催化剂、温度等)的优化选择及其与石墨产率、同位素分馏、束流性能之间的内在联系,总结分析了碳污染来源并探寻合适的碳污染控制技术。目前的研究表明最佳实验条件为:H_2/Fe法宜采用还原剂H_2/CO_2(体积比2~2.5),催化剂为源自氢还原单质铁粉(-325目球粒,Fe/C=2~5),温度500~550℃;Zn/Fe法宜采用还原剂Zn/C(质量比50~80),催化剂为源自氢还原单质铁粉(-325目球粒,Fe/C=2~5),Zn反应管温度400~450℃,Fe反应管温度500~550℃。碳污染来源于制备过程中的各个方面,除采用高温除碳的方式外还可采用适当的数学模型加以校正,但还需要更多详细的实验工作来加强现有认识,以期更好地消除碳污染对测试结果的影响。对测年目标组分不稳定的样品(如地下水中的溶解无机碳)应避免样品直接暴露于大气,以减少野外采样过程中现代大气CO_2对测量结果的影响。  相似文献   

7.
纳米镍/铁对四氯乙烯快速脱氯试验   总被引:5,自引:0,他引:5  
实验室合成的纳米Ni/Fe(粒径20~60nm,比表面积为52. 61m2 /g),在固液比相对较低条件下(5. 4g/L),对四氯乙烯(PCE)能够快速并完全脱氯,在6h时,脱氯率为99. 70%,反应符合准一级反应动力学方程,标准化反应速率常数kSA为3. 04mL·m-2·h-1。反应过程中水样未检测到其他的氯代中间产物或最终产物,无毒的烃类乙烷(C2H6 )是主要产物,约占加入时PCE总碳质量的94% ~110%。试验结果说明加氢催化剂Ni的存在,通过原电池腐蚀作用提高了脱氯速率并同时增加了良性产物的产量(如CH )。  相似文献   

8.
韩文  刘洋  张钧  陆太进 《矿物学报》2020,40(5):549-555
紫色翡翠是天然翡翠中的重要品种,具有很高的经济价值,其主要有2种类型,一种呈较纯的紫色,另一种为带有蓝色色调的紫色。为探究紫色翡翠的致色机理,除采用传统的谱学及化学成分分析外,本文重点采用电子顺磁共振(EPR)、X射线光电子能谱(XPS)等,对2种类型紫色翡翠致色机理、致色元素价态等进行深入研究。结果表明,2种类型紫色翡翠均为硬玉颗粒本身呈色。紫色样品致色与Mn有关(w(Mn O)=0.0035%~0.036%),紫外可见光吸收光谱具有由Mn导致的580 nm吸收带,电子顺磁共振分析显示其主要为Mn~(3+),而并非Mn~(2+)。蓝紫色翡翠由Fe、Ti元素联合致色(w(Fe O)=0.039%~0.25%;w(Ti O_2)=0.018%~0.17%),X射线光电子能谱分析显示其主要致色离子为Fe~(2+)、Fe~(3+)和Ti~(4+),认为蓝紫色翡翠为Fe~(2+)-Ti~(4+)和Fe~(2+)-Fe~(3+)电荷转移致色,由此导致紫外可见光吸收光谱中具530和610 nm的吸收带。  相似文献   

9.
加速器质谱~(14)C制样真空系统及石墨制备方法研究   总被引:1,自引:1,他引:0  
~(14)C制样真空系统和石墨制备方法是高精度低本底~(14)C加速器质谱(AMS)测量的关键,而碳污染、石墨产率不稳定和同位素分馏等问题是限制该技术发展的主要难题。为了降低传统在线还原法对制样系统长时间静态真空的要求和解决Zn-TiH_2/Fe火焰封管法中不可控的CH_4等问题,提高石墨合成的稳定性和控制本底,本文建立了基于Zn/Fe火焰封管法的~(14)C制样真空系统和石墨制备方法。通过比较Zn/Fe在线法和Zn/Fe火焰封管法对石墨束流性能以及标样的影响,发现Zn/Fe火焰封管法相较Zn/Fe在线法能明显克服大气泄漏问题,改善化学流程本底(0.24~0.32pMC),提高方法测年上限(47000~48000ya),同时石墨束流输出稳定。进一步利用标准样品和本底样品评估了Zn/Fe火焰封管法的技术特点,实验结果表明该法的精密度好(RSD=0.35%,n=20,标样OXⅡ),准确度高(IAEA系列标样的测定值与认定值线性拟合方程y=0.9969x+0.0013,R~2=1),实验本底低(无机碳46296±271ya和有机碳48341±356ya)。因此,该石墨样品制备真空系统及Zn/Fe火焰封管法技术具有石墨品质优、化学流程本底低、准确度和精密度高等特点,满足高精度低本底~(14)C-AMS测定石墨样品制备要求。  相似文献   

10.
伍乾富 《岩矿测试》2004,23(4):311-312
采用磷铋钼蓝分光光度法测定电解金属锰中的痕量磷。对w(P)=0.00080%的电解金属锰样品平行测定10次,其相对标准偏差为6.9%,加标回收率为90%~110%。  相似文献   

11.
阿尔泰可可托海3号伟晶岩脉中的铪质锆石   总被引:2,自引:0,他引:2  
张爱铖  王汝成  谢磊  胡欢 《矿物学报》2003,23(4):327-332
利用电子探针技术研究了阿尔泰可可托海3号伟晶岩脉中铪质锆石的成分特征。结果表明:细粒花岗岩和正岩浆阶段结构带(Ⅳ带)的锆石相对贫Hf,(HfO2)=3.06%-13.33%,主要属于普通锆石;岩浆-热液过渡阶段结构带(V带和Ⅶ带)锆石相对富}Hf,w(HfO2)=9.06%-35.21%,主要属于铪质锆石,少量具有普通锆石特征;同时本区发现的铪质锆石中HfO2最高含量是目前伟晶岩已报道铪质锆石中HfO2的最高含量。成分特征还显示,边部细粒花岗岩和正岩浆阶段锆石成分变化非常局限,岩浆-热液过渡阶段锆石成分变化巨大。认为锆石中HfO2含量从正岩浆阶段结构带到岩浆-热液过渡结构带的高度富集是挥发份从岩浆中分离出来独立成相的结果,而岩浆-热液过渡结构带锆石中HfO2含量在带内的巨大变化可能与热液流体的富集有关。  相似文献   

12.
Magneticmineralsintheloess paleosolseriesaccountforabout 1 % -2 %ofthetotal (LiuTungshengandZhangZhonghu ,1 962 ) .Duetotheiraerolianorigin ,themagneticmineralsarecomplicatedincomposition ,largeingrainsizerange ,andsignificantlydifferentincrystallinity .Asaresult,researchonthesemagneticmineralswouldbesetwithalotofdifficulties.Previousre searchersemployedopticalmicroscopic ,X raydiffractionandM ssbauerspectrometrictechniquestostudythemagneticmineralsintheloess paleosolseries,andchieflyontheb…  相似文献   

13.
We report the results of coordinated ion microprobe and transmission electron microscope (TEM) studies of presolar graphites from the KE3 separate (1.65-1.72 g/cm3) of the Murchison CM2 meteorite. Isotopic analysis of individual graphites (1-12 μm) with the ion microprobe shows many to have large 18O excesses combined with large silicon isotopic anomalies, indicative of a supernova (SN) origin. Transmission electron microscopy (TEM) of ultramicrotome slices of these SN graphites revealed a high abundance (25-2400 ppm) of internal titanium carbides (TiCs), with a single graphite in some cases containing hundreds of TiCs. Isotopic compositions of individual TiCs by nanoscale resolution secondary ion mass spectrometry (NanoSIMS) confirmed their presolar origin. In addition to TiCs, composite TiC/Fe grains (TiCs with attached iron-nickel subgrains) and solitary kamacite internal grains were found. In the composite grains, the attached iron phase (kamacite [0-24 at. % Ni] or taenite [up to 60 at. % Ni]) was epitaxially grown onto one or more TiC faces. In contrast to the denser Murchison KFC1 graphites, no Zr-Ti-Mo carbides were observed. The average TiC diameters were quite variable among the SN graphites, from 30 to 232 nm, and were generally independent of the host graphite size. TiC grain morphologies ranged from euhedral to anhedral, with the grain surfaces exhibiting variable degrees of corrosion, and sometimes partially amorphous rims (3 to 15 nm thick). Partially amorphous rims of similar thickness were also observed on some solitary kamacite grains. We speculate that the rims on the internal grains are most plausibly the result of atom bombardment caused by drift of grains with respect to the ambient gas, requiring relative outflow speeds ∼100 km/s (i.e., a few percent of the SN mass outflow speed).Energy dispersive X-ray spectrometry (EDXS) of TiCs revealed significant V in solid solution, with an average V/Ti ratio over all TiCs of ∼83% of the solar value of 0.122. Significant variations about the mean V/Ti ratio were also seen among TiCs in the same graphite, likely indicating chemical equilibration with the surrounding gas over a range of temperatures. In general, the diversity in internal TiC properties suggests that TiCs formed first and had substantially diverse histories before incorporation into the graphite, implying some degree of turbulent mixing in the SN outflows.In most graphites, there is a decrease in the number density of TiCs as a function of increasing radial dis- tance, caused by either preferential depletion of TiCs from the gas or an acceleration of graphite growth with decreasing ambient temperature. In several graphites, TiCs showed a trend of larger V/Ti ratios with increasing distance from the graphite center, an indication of progressive equilibration with the surrounding gas before they were sequestered in the graphites. In all but one graphite, no trend was seen in the TiC size vs. distance from the graphite center, implying that appreciable TiC growth had effectively stopped before the graphites formed, or else that graphite growth was rapid compared to TiC growth. Taken together, the chemical variations among internal grains as well as the presence of partially amorphous rims and epitaxial Fe phases on some TiCs clearly indicate that the phase condensation sequence was TiC, followed by the iron phases (only found in some graphites) and finally graphite. Since graphite typically condenses at a higher temperature than iron at low pressures (<10−3 bars) in a gas with C > O and otherwise solar composition, the observed condensation sequence implies a relative iron enrichment in the gas or greater supersaturation of graphite relative to iron.The TEM observations allow inferences to be made about the physical conditions in the gas from which the grains condensed. Given the TiC sizes and abundances, the gas was evidently quite dusty. From the observed TiC size range of ∼20 nm to ∼500 nm (assuming ∼1 yr growth time and T ∼ 1800°K), we infer minimum Ti number densities in the gas to be ∼7 × 104 to ∼2 × 106 atoms/cc, respectively. Although the gas composition is clearly not solar, for scale, these number densities would correspond to a pressure range of ∼0.2 μbar to ∼5.0 μbar in a gas of solar composition. They also correspond to minimum TiC grain number densities of ∼3 × 10−4 to ∼0.2 grains/cc, assuming complete condensation of Ti in TiC. We estimate the maximum ratio of mean TiC grain separation distance in the gas to grain diameter from the Ti number densities as ∼3 × 105 to ∼1 × 106.  相似文献   

14.
A low-grade metamorphic ultramafic rock at the Kval ya Island, North Norway, shows Ni content up to 5 600 ppm, and an average content of 2 500 ppm Ni. Olivine is absent from the rock, and Ni is principally bonded in pentlandite, violarite and millerite. The rock might be considered as a low-grade ore, with 0.2wt%– 0.56wt% Ni. Other metals that might be of economic interest to extract from the rock include Co (from pentlandite and violarite), and Cr and Fe (from magnetite).  相似文献   

15.
Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively high As (median value of 1.44 wt%), Au, Fe, Mn, Mo, Sb, and Zn and low Bi, Co, Ni, and Pb. The main ore stage Apy2, compared to late ore stage arsenopyrite, is relatively enriched in As, whereas the later Apy3 has high concentrations of S, Fe, and Sb, which is consistent with element patterns in associated main and late ore stage pyrite generations. Compared with pyrite from other stages, the post-ore stage Py4 has relatively low concentrations of Fe and S, whereas As remains elevated (2.05~3.20 wt%), which could be interpreted by the substitution of As? for S in the pyrite structure. These results suggest that syngenetic/diagenetic pyrite is the main metal source for the Yangshan gold deposits where such pyrite was metamorphosed at depth below presently exposed levels. The ore-forming elements were concentrated into the hydrothermal fluids during metamorphic devolatilization, and subsequently, during extensive fluid–rock interaction at shallower levels, these elements were precipitated via widespread sulfidation during the main ore stage.  相似文献   

16.
Superfine graphite powder was prepared by ball-milling exfoliated graphite containing anhydrous CuCl2 in planetary ball milling systems. Nano-scale CuCl2 graphite intercalation compounds were synthesized by heating a mixture of anhydrous CuCl2 and graphite nanosheets. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and high-resolution transmission electron microscopy were performed to characterize the microstructures of stage-1 nano-scale CuCl2 graphite intercalation compounds. The structure and components of the domain wall and core in the nano-scale CuCl2 graphite intercalation compounds are described. The results show that the content of CuCl2 in the mixture plays a crucial role in the size of the nano-scale CuCl2 graphite intercalation compound.  相似文献   

17.
A new mineral, jichengite ideally 3CuIr2S4·(Ni,Fe)9S8, was found as a constituent of placer concentrates at a branch of the Luanhe River, about 220 km NNE of Beijing. Its associated minerals are chromite, magnetite, ilmenite, zircon, native gold, iridium, ferrian platinum and osmium. The placer is distributed at places around ultrabasic rock, which hosts chromite orebodies, from which PGM originated. Jichengite occurs commonly as massive or granular aggregates. No perfect morphology of jichengite was observed. It is steel gray and opaque with metallic luster and black streak. It has a Mohs hardness of 5, VHN (d) μm 21.65, Hm 4.465, Hv = 268.1 N/um2. It is brittle and weakly magnetic. Cleavage {010} is rarely observed. No fracture was observed. Density could not be measured because of its too small grain size. Density (calc.) is 7.003 g/cm3. Reflect light is reddish-brown, without internal reflections. Anisotropism is distinct with grayish or yellowish white in crossed nicols and bluish violet-copper red in uncrossed nicols. Jichengite shows weak pleochroism and strong bireflectance. The reflectance values in air at the Standard Commission on Ore Mineralogy wavelengths are: 38.9, 34.3 at 470 nm, 38.9, 34.5 at 546 nm, 39.1, 35.3 at 590 nm, 39.2, 36.8 at 650 nm, parallel-axial extinction. The six strongest lines in the X-ray powder-diffraction pattern [d in ?, (I), (hkl)] are: 3.00 (100) (116), 2.80 (50) (205), 2.48. (50) (208), 1.916 (40) (2, 1, 10), 1.765 (60) (220), 1.753 (50) (2, 0, 16). Five chemical analyses carried out, yielding the following results: S 25.76 (25.49-5.97), Fe 10.03 (9.78-10.31), Co 0.78 (0.75-0.81), Ni 12.48 (12.32-12.85), Cu 4.77 (4.69-4.83), Ir 46.98(46.14-47.89), sum 100.80wt%, which produced a formula (Cu1.556Fe0.976)2.532(Ir5.063S10.126)·(Fe2.7451Ni4.404Co0.273)7.422S6.517. The ideal formula is X10Ir5S17.5, which was calculated by single crystal structure analyses, where X = Cu(II) + Fe(II) + Ni(II) + Co(II). The single crystal data were collected using a diffractometer with Mo Ka radiation and a graphite monochromate. The crystal system is trigonal with space group R3m and unit cell parameters a=7.0745(14) ?, c=34.267(10) ? (The superstructure not found), and the final R Indices [with 564 observed reflections, I>2sigma (I)] are R1=0.0495, wR2=0.1349. The specimens are deposited in the Geological Museum of China.  相似文献   

18.
Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the source for most sedimentary rocks of the Ramah Group, except for black shales of the Nullataktok Formation. The black shales were apparently derived from Provenance II that was comprised mostly of felsic rocks with SiO2 contents approximately 65 wt%. Comparing the compositions of the Ramah Group sedimentary rocks and their source rocks, we have recognized that several major elements, especially Ca and Mg, were lost almost entirely from the source rocks during weathering and sedimentation. Sodium and potassium were also leached almost entirely during the weathering of the source rocks. However, significant amounts of Na were added to the black shales and K to all the rock types during diagenesis and/or regional metamorphism. The intensity of weathering of source rocks for the Ramah Group sediments was much higher than that of typical Phanerozoic sediments, possibly because of a higher PCO2 in the Proterozoic atmosphere. Compared to the source rock values, the Fe3+/Ti ratios of many of the graywackes and gray shales of the Ramah Group are higher, the Fe2+/Ti ratios are lower, and the sigma Fe/Ti ratios are the same. Such characteristics of the Fe geochemistry indicate that these sedimentary rocks are comprised of soils formed by weathering of source rocks under an oxygen-rich atmosphere. The atmosphere about 1.9 Ga was, therefore, oxygen rich. Typical black shales of Phanerozoic age exhibit positive correlations between the organic C contents and the concentrations of S, U, and Mo, because these elements are enriched in oxygenated seawater and are removed from seawater by organic matter in sediments. However, such correlations are not found in the Ramah Group sediments. Black shales of the Ramah Group contain 1.7-2.8 wt% organic C, but are extremely depleted in sigma Fe (<1 wt% as FeO), S (<0.3 wt%), U (approximately l ppm), Mo (<5 ppm), Ni (<2 ppm), and Co (approximately 0 ppm). This lack of correlation, however, does not imply that the approximately 1.9 Ga atmosphere-ocean system was anoxic. Depletion of these elements from the Ramah Group sediments may have occurred during diagenesis.  相似文献   

19.
捕虏体麻粒岩是了解下地壳形成和演化的重要样品。汉诺坝新生代玄武岩中的二辉麻粒岩捕虏体样品中富含各种硫化物相,主要类型有:①孤立产出的球状出溶硫化物;②矿物颗粒之间或颗粒内的粗晶硫化物;③次生硫化物包裹体群;④裂隙充填硫化物。电子探针分析表明,硫化物的矿物成分均为贫镍磁黄铁矿,(Ni+Co+Cu)/Fe(原子比)远小于0.2;(Fe+Cu+Co+Ni)/S(原子比)比地幔岩的磁黄铁矿小,多小于0.875,反映了一种S过饱和环境。各种产状的磁黄铁矿中Au、Ag都有一定的含量,其平均值分别为0.19%~0.22%(Au)、0.01%~0.02%(Ag),反映下地壳的麻粒岩化与金矿化的成因联系。磁黄铁矿的Ni、Co、Cu含量与S正相关,说明微量重金属元素与S具有同源的关系,由于地幔去气伴随S而进入下地壳。  相似文献   

20.
Superfine graphite powder was prepared by bali-milling exfoliated graphite containing anhydrous CuCl_2 in planetary ball milling systems.Nano-scale CuCl_2 graphite intercalation compounds were synthesized by heating a mixture of anhydrous CuCl_2 and graphite nanosheets. Scanning electron microscopy,energy-dispersive X-ray spectroscopy and high-resolution transmission electron microscopy were performed to characterize the microstructures of stage-1 nano-scale CuCl_2 graphite intercalation compounds.The structure and components of the domain wall and core in the nano-scale CuCl_2 graphite intercalation compounds are described.The results show that the content of CuCl_2 in the mixture plays a crucial role in the size of the nano-scale CuCl_2 graphite intercalation compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号