首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromite deposits in Iran are located in the ophiolite complexes, which have mostly podiform types and irregular in their settings. Exploration for podiform chromite deposits associated with ophiolite complexes has been a challenge for the prospectors due to tectonic disturbance and their distribution patterns. Most of Iranian ophiolitic zones are located in mountainous and inaccessible regions. Remote sensing approach could be applicable tool for choromite prospecting in Iranian ophiolitic zones with intensely rugged topography, where systematic sampling and conventional geological mapping are limited. In this study, Landsat Thematic Mapper (TM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data were used for chromite prospecting and lithological mapping in the Neyriz ophiolitic zone in the south of Iran. Image transformation techniques, namely decorrelation stretch, band ratio and principal component analysis (PCA) were applied to Landsat TM and ASTER data sets for lithological mapping at regional scale. The RGB decorrelated image of Landsat TM spectral bands 7, 5, and 4, and the principal components PC1, PC2 and PC3 image of ASTER SWIR spectral bands efficiently showed the occurrence of major lithological units in the study area at regional scale. The band ratios of 5/3, 5/1, 7/5 applied on ASTER VNIR‐SWIR bands were very useful for discriminating most of rock units in the study area and delineation of the transition zone and mantle harzburgite in the Neyriz ophiolitic complex. Spectral Angle Mapper (SAM) technique was implemented to ASTER VNIR‐SWIR spectral bands for detecting minerals of rock units and especially delineation of the transition zone and mantle harzburgite as potential zones with high chromite mineralization in the Neyriz ophiolitic complex. The integration of information extracted from the image processing algorithms used in this study mapped most of lithological units of the Neyriz ophiolitic complex and identified potential areas of high chromite mineralization (transition zone and mantle harzburgite) for chromite prospecting targets in the future. Furthermore, image processing results were verified by comprehensive fieldwork and laboratory analysis in the study area. Accordingly, result of this investigation indicate that the integration of information extracted from the image processing algorithms using Landsat TM and ASTER data sets could be broadly applicable tool for chromite prospecting and lithological mapping in mountainous and inaccessible regions such Iranian ophiolitic zones.  相似文献   

2.
以深圳市东部滨海地区为试验区,对2004年11月21日ASTER遥感数据进行辐射和几何精校正处理,实地建立分类样地;根据多边形样地矢量数据计算分析12类地物在ASTER各波段光谱反射图和分类叠合图,同时进行植被指数和短波红外5个波段主成分分析;结合GIS并利用ASTER光谱波段、第一主成分、植被指数、立体像对生成的地形因子建立土地利用分类决策树表;再根据决策树表对ASTER影像进行土地利用分类。经验证,分类结果总体精度达到85.1%。应用效果表明,利用ASTER数据进行土地现状资源调查具有很好的性价比,能够满足土地利用现状调查的准确度和精度。  相似文献   

3.
Satellite remote sensing is shown to provide critical support for geological and structural mapping in semiarid and arid areas. In this work, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to clarify the geological framework of the Precambrian basement of the Iguerda Proterozoic inlier in the Moroccan Central Anti-Atlas. In this study, the interpretation of the processed digital data has been ground truthed with geological field data collected during a reconnaissance-mapping program in the Central Anti-Atlas. The Iguerda inlier offers a deeply eroded Precambrian massif dominated by a Paleoproterozoic basement composed of supracrustal metasedimentary units intruded by various Eburnian granitoids. Impressive mafic dyke swarms mainly of Proterozoic age crosscut this basement. Eburnian basement rocks are unconformably overlain by Lower Ediacaran volcanosedimentary rocks of the Ouarzazate Group and Upper Ediacaran–Lower Cambrian carbonates. The applied ASTER analyses are particularly effective in the lithological differentiation and discrimination of geological units of the Iguerda inlier. The spectral information divergence (SID) classification algorithm coupled with spectral angle mapper and maximum likelihood classification effectively discriminates between metamorphic rocks, granitoid bodies, and carbonate cover. SID classification improves geologic map accuracy with respect to the spatial distribution of plutonic bodies and metamorphic units. In addition, Paleoproterozoic granitoids have been well discriminated into separate distinct suites of porphyritic granites, granodiorites, and peraluminous leucogranite suites. This discrimination was initially identified via remote sensing analysis and later ground truthed in the field. This methodology enhances geological mapping and illustrates the potential of ASTER data to serve as a vital tool in detailed geologic mapping and exploration of well-exposed basement of arid regions, such as the Proterozoic of the Anti-Atlas Mountains of Morocco.  相似文献   

4.
《China Geology》2022,5(4):614-625
Landsat 8 Oli, ASTER, and Sentinel 2A satellite images processing was used to map geological formations, lineaments and hydrothermal alteration minerals in the Aouli inlier, as a case study to illustrate the application of digital images processing and Geographic Information System (GIS) in geological mapping and mining prospecting. Principal Component Analysis (PCA) applied to the Landsat images allowed good lithological discrimination and contributed to the updating of available geological maps. The Automatic lineament extraction from Sentinel images revealed the main tectonic structures affecting Aouli inlier. The ratio bands (b5+b7)/b6 and the false color composite (b4/b6, b2/b1, b3/b2) allowed the hydrothermal alteration minerals mapping from Aster images. Combined with available geological data and field observations, the satellite derived data were integrated and analyzed in a GIS software to establish mining prospecting guides. The results showed that the anomaly zones are intimately linked to NNE –SSW and NW –SE oriented faults and to highly fractured areas developing argillic and Fe rich alterations. Verified via field survey, this approach was successfully applied to the Aouli inlier to rapidly target potential areas to be explored in the tactical phase. This provides a model for future prospecting efforts for similar mineral deposits in other areas.©2022 China Geology Editorial Office.  相似文献   

5.
In recent years, the Neoproterozoic Huqf Supergroup formations of the Oman Salt Basins have been the target for oil exploration. The present study maps the surficial exposure of the Huqf Supergroup in and around Khufai Dome of the Huqf area in the Sultanate of Oman using low-cost multi-spectral remotely sensed satellite data and image processing methods such as decorrelation stretching, principal component analysis (PCA) and spectral angle mapper (SAM), as alternative to expensive and time-consuming tools, which have the capability and potential to be used by geoscientists for oil exploration. In this research, the study of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral bands 8, 3 and 1 by decorrelation stretching well discriminated the Masirah Bay, the Khufai, the Shuram and the Buah Formations of the Nafun Group, the source rocks of Huqf Supergroup with the Quaternary deposits. The analysis of visible and near infrared–shortwave infrared spectral bands of ASTER by PCA clearly showed the occurrence and spatial distribution of such formations in the RGB principal component images (R:PC1, G:PC2, B:PC3). The spatial distributions of such formations are assessed by confusion matrix after using maximum likelihood (ML), spectral angle mapper (SAM) and spectral information divergence (SID) algorithms. The matrix of ML algorithm has provided the best overall accuracy of 92.93% and kappa coefficient of 0.92. The minerals of the formations were detected by SAM. Further, the detection of such mineral groups was confirmed through the ASTER thermal infrared (TIR) spectral indices image developed using the carbonate index (CI), quartz index (QI), and mafic index (MI). All results of image analyses are evaluated in the field and laboratory studies. The study also evaluates the satellite data and image processing methods for the formations of Jabal Akhdar, the equivalent formations of the Khufai Dome, to show the sensor capability and the use of the image processing methods to study the source rocks. The results of the study provided similar discriminations comparable to the Khufai Dome. Therefore, the data and the techniques are recommended to the exploration geologists for use in similar regions of the world.  相似文献   

6.
The Neoproterozoic Wadi Kid metamorphic belt in southeastern Sinai in Egypt represents a structurally and metamorphically complex assemblage of metasedimentary and metavolcanic rocks folded into a series of ENE–WSW-trending antiforms and synforms. Geological mapping in this region is challenging, primarily due to difficult access, complexity of structures, and lack of resolution and areal integrity of lithological differentiation using conventional mapping techniques. Spectral ratioing of selected bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the area, in synergy with geological field observation, proved effective in resolving geological mapping problems in the region. A new ASTER band-ratio image 4/7-4/6-4/10 is applied successfully for lithological mapping in the Wadi Kid area, showing improvement over previous techniques in detailing the main rock units. These are gneiss and migmatite, amphibolite, volcanogenic sediments with banded iron formation, meta-pelites, talc schist, meta-psammites, meta-acidic volcanics, meta-pyroclastics volcaniclastics, albitites and granitic rocks. Validating the use of the new ASTER band-ratio image relied on both calculating statistical optimum index factor (OIF) and matching interpreted lithological boundaries to field data and previously published geologic maps. The adopted ASTER band-ratio image demonstrates the benefit of using ASTER remote sensing data in lithological mapping of the Wadi Kid area and therefore for lithological mapping in the Arabian–Nubian shield and other arid areas.  相似文献   

7.
以西昆仑造山带西段阿勒塔什地区为例,在缺少地表各岩石单元样品的情况下,对ASTER VNIR-SWIR波段反射率数据进行处理,提取岩性信息。首先对VNIR-SWIR多波段反射率数据进行最佳指数因子(IOIF)运算,得出最佳波段组合Band7-Band4-Band3,从其假彩色合成图像上只能识别少量岩性单元;为了减少高相关性波段之间的信息冗余度、并对波段信息进行集成,后对ASTERVNIR-SWIR波段反射率数据采用主成分变换并进行彩色合成,该图像能详细划分研究区多种岩性单元,如元古宙岩层、志留纪岩层、二长花岗岩岩体和英云闪长岩岩体,以及微观地质信息,如侵入岩热接触变质带、小型岩株和岩性界线。对比已有少量地质资料,认为提取结果可靠,为野外地质制图工作能提供超前信息。  相似文献   

8.
张昭  陈川  李云鹏 《地质论评》2022,68(6):2365-2380
遥感技术广泛应用于地质基础调查、矿产资源勘探、环境评估和地质灾害调查等方面。它已从多光谱发展到高光谱阶段,Landsat- 8是目前最具有代表性和最常用的多光谱数据,ASTER具有高的分辨率和多波段特征,资源一号02D(ZY1- 02D)卫星是我国2019年发射的高光谱业务卫星。为了更好地了解多源遥感数据在岩矿识别中的作用,在新疆东天山卡拉麦里地区进行了相关研究。结果表明:Landsat- 8 OLI的PCA变换结果清晰识别了研究区不同的岩性和地层;使用Landsat- 8 OLI、ASTER和ZY1- 02D高光谱数据,分别采取不同的图像端元提取方法,在进行光谱分析的基础上,利用光谱角填图(SAM)即可得到研究区的主要矿物分类图件。通过野外验证,应用GIS技术进行集成和分析,修正相关图件后,便得到了精准的矿物分类综合图。研究表明:多源遥感数据的集成在岩矿识别方面效果良好、前景巨大。  相似文献   

9.
This study demonstrates the use of ASTER data for the mapping of gypsum deposits and associated geological formations that occurred in the Thumrait region of southern Oman. The measurement of spectra over samples of gypsum in the 1,300–2,500 nm wavelength using a PIMA spectrometer showed the presence of distinct absorptions at 1400–1600, 1750, 1940, 2,100, and 2,400 nm characteristics to O? H stretching, H2O combinations, and S? O bending overtones and stretching, respectively. Studying the unique spectral absorption characters of gypsum samples, we developed a false color composite (FCC) and an image by decorrelation stretch using the spectral bands 7, 3, and 2 of ASTER. The results FCC showed the regions of gypsum occurrences, and the decorrelated image discriminated the gypsum occurrences from other geological formations of the area. The study of surface mineralogy of the region using the VNIR‐SWIR bands by the spectral angle mapper method showed the presence of sulfate, carbonate, and clay minerals of the geological formations in the study area. We compared the results of ASTER with the results obtained using spectral bands 12, 8, and 4 of Sentinel‐2A processed by the same methods. The study showed that the spectral bands of ASTER can be used for mapping the gypsum and associated geological formations.  相似文献   

10.
Djelfa area in the central Saharan Atlas is characterized by its high lithological diversity with different facies from the Triassic to the Tertiary. The lack of published geological maps of the region (Djelfa) prompted us to test specific processing of satellite images (ratio bands, principal component analysis) in order to establish a lithological discrimination of the region. Several treatments allowed us to map the lineaments highlighting the various tectonic structures of the region. The combination of field and remote sensing data pointed out the double influence of the E-W Eocene and N-S Miocene phases in the structuration of these regions. As a large part of the Djelfa area is inaccessible, the obtained results undeniably contribute to a better understanding of the local geology.  相似文献   

11.
植被覆盖区卫星高光谱遥感岩性分类   总被引:1,自引:0,他引:1  
植被高覆盖区岩石和土壤在遥感图像上表现为弱信息、小目标,如何利用卫星高光谱遥感提取岩性弱信息是目前遥感地质应用中的最大挑战之一。以黑龙江呼玛地区为例,选择美国EO-1卫星Hyperion高光谱数据。由于植被与下伏岩石-土壤的光谱混合,分别计算研究区含土壤因子和不含土壤因子的植被指数,并对两类不同的植被指数进行主成分分析,以此分离植被和岩石-土壤组分。在含土壤因子植被指数主成分分析的二维组分散点图上,明显区分出背景植被与异常岩石-土壤组分,证实了植被与岩石-土壤组分经主成分分析分离的效果。同时在不添加土壤因子植被指数的分析中,明显区分出植被覆盖信息。通过对实验区典型岩石进行野外光谱测试,然后对光谱进行连续统去除处理,将其作为参考光谱,与分离后的岩石-土壤光谱进行光谱特征拟合(SFF),从而成功地识别出研究区内不同岩石类型,特别是玄武岩、流纹岩、砂砾岩、安山质凝灰岩、大理岩和石英片岩识别效果较好。根据研究区内不同岩石地层单元内岩石组合特征,通过分离后的组分合成图像,成功地实现了岩性分类。与已知地质图叠加,证实通过卫星高光谱数据提取的不同岩石类型颜色边界与地质图岩性界线吻合较好。结果表明:通过植被与岩石-土壤光谱组分分离,结合高光谱遥感的光谱特征拟合,能够识别不同的岩石类型,实现植被覆盖区岩性分类。  相似文献   

12.
刘泽  张志  陈建平 《江苏地质》2020,44(4):401-406
基于ASTER数据、Landsat 8数据及WorldView-2数据,采用波段组合法、最小噪声分离法、主成分分析法以及波段比值法,结合岩石光谱曲线,综合提取了新疆北山地区侵入岩的岩性特征。对WorldView-2进行主成分分析和最小噪声分离,并将R(PCA2)G(PCA1)B(PCA4)、R(MNF2)G(MNF1)B(PCA1)、OLI数据R(B7)G(B6)B(B5)进行假彩色合成,利用OLI数据中的B5/B2、B2/B1突出花岗岩。这些方法解决了复杂岩性的影像色调差异较小、细节不清晰等问题,降低了岩性划分及解译的难度,使各种岩性界线更加明晰。结合前人的区域地质调查成果,对研究区侵入岩岩性进行了系统解译及分析。多源遥感数据的综合利用,有助于更有效地识别复杂岩性并进行更详细的岩性分类,提高遥感岩性识别的正确率。  相似文献   

13.
Lithological discrimination of Neoproterozoic rocks occupying Nugrus-Hafafit area, South Eastern Desert of Egypt, has been carried out using Operational Land Imager (OLI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors’ imagery data. The applicable processing enhancement techniques include optimum index factor (OIF), band ratioing, principal component analysis (PCA), and minimum noise fraction (MNF) transform. The area comprises varieties of low-grade metamorphosed ophiolitic mélange and island-arc rocks, thrusting over high-grade metamorphic gneissic core complexes, and intruded by syn-, late-, and post-tectonic granitoids. The OLI band ratio 6/7 discriminates clearly the ophiolitic serpentinites-talc-carbonate rocks, while 4/5 ratio image is able to separate between mafic and felsic rocks. Moreover, the ASTER band ratio 6/8 is used to distinguish the amphibole-bearing rocks, including amphibolite and hornblende gneiss. The OLI and ASTER second principal component (PC2) images reflect the contrast spectral behavior of ophiolitic mélange rocks through visible-near-infrared (VNIR) and shortwave (SWIR) regions. The OLI-PC3 shows the ability to delineate the Fe-rich rocks, including amphibolite and metamafics, while ASTER-PC3 is effective for quartz-feldspathic granites and psammitic gneisses. Visual interpretation and integration of processed data with petrography and field investigation resulted in complete differentiation for the different lithologies and creation of a new detailed geological map of Nugrus-Hafafit area.  相似文献   

14.
This study demonstrates the capability of the longer wavelength (L-band) and fine mode images of the Phased Array type L-band Synthetic Aperture Radar (PALSAR), and the optical spectral bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map sedimentary formations and structures of the Marmul region, Central Oman. Results of study shows that the principal components image of the visible and near infrared–shortwave infrared (VNIR-SWIR) spectral bands of the ASTER have potential to discriminate the occurrence and distribution of marine and Quaternary sedimentary formations of the region. The color composite image developed using PALSAR data (R:HH?+?HV; G:HH; B:HV) has capable to differentiate the occurrence of the sedimentary formations and structures of the region. We developed ratios images by summing the HH intensity as a numerator and the HV intensity as a denominator (R:HH+(HH?+?HV)/HV, G:HH?+?HV, B:HH/HV), and by summing the HV intensity as a numerator and the HH intensity as a denominator (R:HV+(HH?+?HV)/HH, G:HV?+?HH, B:HV/HH) to study better the sedimentary formations and structures. The images discriminated well the occurrence of the limestones and shale formations of the marine deposits, the wadi alluvium of the Quaternary deposits and the manmade building structures of the region. We studied the minerals of the sedimentary formations using VNIR-SWIR spectral bands of the ASTER by spectral angle mapper (SAM) image processing method. The study showed presence of carbonates, silicates and OH bearing aluminosilicate minerals in the formations. The image interpretations are verified in the field and confirmed by the laboratory studies.  相似文献   

15.
用ASETR图像和地统计学纹理进行岩性分类   总被引:9,自引:0,他引:9  
李培军 《矿物岩石》2004,24(3):116-120
运用新获取的ASTER数据可以对岩性进行识别与分类:首先运用地统计学中的变差函数来计算分析几种选定的岩性单元的灰度值空间变化特征;运用ASTER数据的可见光一近红外波段、短波红外(SWIR)波段以及二者的组合进行岩性的分类,分析分类精度的变化。用变差函数作为纹理的计算函数来提取图像纹理,并与原始的光谱数据结合,进行岩性的分类。结果表明,与单纯的光谱分类相比,加入纹理信息可显著改善分类精度;用不同方向的滞后距离提取的图像纹理对图像的分类结果有一定的差异,尤其是对存在明显的各向异性的岩石单元。  相似文献   

16.
Caves, springs, and large depressions of limestone karst formations are becoming more attractive tourist places and have potential importance on socio-economic development. The present study is a multi-scale point of view on limestone karst, from the space images to microscopic fabric. Here, the karst features consist of limestone formations of Cretaceous (Albian–Cenomanian) age of Tanuf Valley and Tertiary (Late Paleocene–Middle Eocene) age of Sur region of parts of Sultanate of Oman which are mapped in the visible near-infrared and shortwave infrared spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) using decorrelated stretch image processing technique and the occurrences of caves, springs, and depressions of the formations in the field were studied. The decorrelated RGB images of ASTER spectral bands 8, 3, and 1 discriminated well the limestone formations and associated lithology. The limestone formations of Tanuf valley (Natih formations of Hajar unit) are thick-bedded, massive, shallow marine limestone and clayey limestone, which have caves and springs. Large depressions are studied as collapsed structures at the boundary between Abat formations; they consist of gray to white marly or micritic limestone with chert nodules and Seeb Formation of bioclastic limestone, calcarenite, marl, and sandstone of Sur region. Interpretations of limestone formations, their occurrences and distributions of caves, springs and depressions of these regions are verified and confirmed in the field and studied in the laboratory. Occurrences of more springs and depressions in the limestone formations of the study sites are interpreted and located on the Google Earth image. The study proved the capability of ASTER sensor in mapping of limestone formations and recommends the technique to other geographical regions where similar geological questions need to be resolved.  相似文献   

17.
Podiform chromite ore deposits in ultramafic parts of ophiolite rock complexes can be detected using remote sensing data. This study focuses on the discrimination of chromite bearing mineralized zones using Landsat TM and Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data in Abdasht ophiolite complex, south of Iran. Several image processing methods, including Log residual, Decorellation Stretch, Band ratio and Mixture-Tuned Matched-Filtering (MTMF) have been evaluated for lithological mapping using Landsat ETM and ASTER data. The outcome showed that TIR band ratios of ASTER can discriminate quartzite, carbonate and mafic–ultramafic rocks in the ophiolite complex. Log residual, Decorollation Stretch and MTMF methods were more capable than previous published ASTER methods specifically for lithological mapping at a regional scale. New geological map of Abdasht region was produced based on the interpretation of ASTER image processing results and field verification. Consequently, the proposed methods demonstrated the ability of ASTER and Landsat ETM data to provide information for detecting chromite host rock (serpentinized dunites) that is valuable for chromite prospecting in study area. Additionally, the techniques used in this study are subtle for exploration geologist and mine engineering to identify high-potential chromite-bearing zones in the ophiolite complex, minimizing costly and time-consuming field works.  相似文献   

18.
Multispectral, multiresolution remotely sensed data were processed to emphasize geological interpretation of Jabal Daf-Wadi Fatima area. The investigated area is situated in the central western part of Saudi Arabia and geologically consists of igneous and metamorphosed rocks overlain by sedimentary sequence belonging to the Arabian-Nubian Shield. Three sets of digital satellite data, Landsat-7 ETM+, ASTER, and SPOT-5, were used in this study. The application of image processing techniques enables to identify and delineate the lithologic units and the structural features of the study area. The results of this study indicate that the confusion matrix of the three maximum likelihood supervised classifications of the three datasets shows that the Landsat ETM+ bands scored the best degree of average and overall accuracy (77 and 78%, respectively). This classification distinguishes most of the rock units for mapping in the investigated area. The supervised classification of ASTER and SPOT bands has lower degrees of accuracy than the classified Landsat data. The supervised classification of SPOT bands has a degree of average and overall accuracy of 66 and 67%, respectively, but it is the best for distinguishing the spectral signatures of the different members of Fatima Formation (lower, middle, and upper members). The statistical analyses of the confusion matrices of classifications and the interpretation of the produced classified thematic maps revealed that the classification accuracy does not necessary depend on the spatial resolution of satellite data. The data of the highest spatial resolution such as SPOT data are also very useful in emphasizing and classifying the rock units of a small outcrop area. The detailed geological map of Jabal Daf-Wadi Fatima area is interpreted in this work from supervised classified images of different resolutions as well as the structure map of this area. This study shows that it is preferable to use the supervised classifications of multiresolution data for rock unit discrimination in detailed field mapping.  相似文献   

19.
SVM and SAM classifiers for the lithological mapping using Hyperion data in parts of Gadag schist belt of western Dharwar craton, Karnataka, India were used. The main objective of the present study is to assess and compare the potential use of Hyperion data set for lithological mapping. Accuracy assessment of the derived thematic maps was based on the analysis of the confusion matrix statistics computed for each classification map. For consistency, the same set of validation points were used in evaluating the accuracy of the lithological thematic maps produced. On the basis of the accuracy assessment results, it appears that SVM generally outperformed the SAM classifier in both OA accuracy and individual classes’ accuracies. OA accuracy and Kc for SVM is 96.93% and 0.9655, whereas for SAM it is 74.02% and 0.7085 respectively. SVM classification is the best in describing the spatial distribution and the cover density of each lithology, as was also indicated from the statistics of the individual class results. The individual class accuracy were also analyzed for the SVM and the result show that PA ranges from 87% to 100% and UA ranges from 91% to 100%, whereas for SAM ranges from 15% to 95%, and from 31% to 100% respectively. The SVM method could effectively classify and improve on the existing geological map for the Gadag schist belt (GSB) using hyperspectral data. The results could be validated through field visits. Therefore, it is concluded that hyperspectral remote sensing data can be efficiently used to improve existing maps, especially in areas where same rock types show variable degree of alteration over smaller spatial scales.  相似文献   

20.
This study is an attempt to understand the application of spectral image processing methods to ASTER data for mapping host rock associated with porphyry copper-molybdenum mineralization. The application of remote sensing in identifying variations in surface mineralogy, structural elements, and lithologic contacts can help in identifying such relations. Signatures collected from the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) data is used to map the host rock of Zafarqand area. The study area is located in the central segment of the Urumieh–Dokhtar volcanic belt of Iran. The Urumieh-Dokhtar is a potential zone for exploration of new porphyry copper deposits. Band ratio, band math, false colour composites and principal component analysis techniques are used to refine the different lithologic units in the area. These methods showed the discrimination of acidic igneous rock from intermediate igneous rock and the boundary between igneous rocks using the shortwave infrared bands (SWIR) of ASTER at regional scale. Results have proven to be effective and in accordance with the results of field observations, ore microscopy examination and with reference geological map. In conclusion, the image processing methods used can provide cost-effective information to discover possible locations of porphyry copper and epithermal gold mineralization prior to detailed and costly ground investigations. The extraction of spectral information from ASTER data can produce comprehensive and accurate information for copper and gold resource investigations around the world, including those yet to be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号