首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Landslides are among the most common and dangerous natural hazards in mountainous regions that can cause damage to properties and loss of lives. Landslide susceptibility mapping (LSM) is a critical tool for preventing or mitigating the negative impacts of landslides. Although many previous studies have employed various statistical methods to produce quantitative maps of the landslide susceptibility index (LSI) based on inventories of past landslides and contributing factors, they are mostly ad hoc to a specific area and their success has been hindered by the lack of a methodology that could produce the right mapping units at proper scale and by the lack of a general framework for objectively accounting for the differing contribution of various preparatory factors. This paper addresses these issues by integrating the geomorphon and geographical detector methods into LSM to improve its performance. The geomorphon method, an innovative pattern recognition approach for identifying landform elements based on the line of sight concept, is adapted to delineate ridge lines and valley lines to form slope units at self-adjusted spatial scale suitable for LSM. The geographical detector method, a spatial variance analysis method, is integrated to objectively assign the weights of contributing factors for LSM. Applying the new integrated approach to I-Lan, Taiwan produced very significant improvement in LSI mapping performance than a previous model, especially in highly susceptible areas. The new method offers a general framework for better mapping landslide susceptibility and mitigating its negative impacts.  相似文献   

2.
Xiu  Zongxiang  Xu  Qiang  Shan  Zhigang  Sun  Yongfu  Xie  QiuHong  Song  Yupeng 《Natural Hazards》2021,108(2):2225-2248

Submarine landslides are a great hazard to offshore pipelines. The comparison and optimisation of pipeline routing schemes to reduce the potential submarine landslide risk is a key issue in offshore oil and gas development engineering. This paper presents an improved group decision-making evaluation method for offshore pipeline routing optimisation in areas prone to submarine landslides. An information integrity variable is proposed to adjust the relative weight of each factor considering the incompleteness of the engineering geological survey information and data. The credibility level of each expert involved in the evaluation, which is calculated based on the similarity and difference of the experts’ judgment matrices, is introduced to correct the information integrity variable, relative weights, and memberships. The group decision-making for offshore pipeline routing selection is then obtained based on the principle of the majority rule. Finally, a case of pipeline routing optimisation in the submarine canyon area of the Baiyun depression, northern South China Sea, is assessed by using the proposed method. The result shows that the proposed group decision-making method can enhance the objectivity of the assessment for the offshore pipeline routing optimisation under a subjective environment.

  相似文献   

3.
Sadiq  Simon  Muhammad  Umar  Fuchs  Michael 《Natural Hazards》2022,110(3):2141-2162

Lineament extraction has long been performed through extensive field mapping. Recent advances in the field of remote sensing have made possible the availability of imageries from earth observation satellites with different Spatio-temporal resolutions, paving way for new automatic, semi-automatic, and manual techniques for the extraction of natural lineaments. The study focuses on the extraction of lineaments representing tectonic fault zones; the lineaments are extracted automatically and semi-automatically/manually. Results show that indirect information about the tectonic lineaments can be derived through automatic techniques whereas, the semi-automatic techniques are more effective to directly identify them. Detailed analyses of lineaments and landslides revealed that areas near lineaments, in general, experienced higher frequency of landslides. Moreover, it is also observed that lineaments are not the only factor that affects landslide density; other parameters like slope and lithology were also found to be the controlling factors in determining the spatial landslide distribution. Lastly, some recommendations have been made based on observations.

  相似文献   

4.
Quality assessment of the Italian Landslide Inventory using GIS processing   总被引:4,自引:1,他引:3  
Landslides constitute one of the most important natural hazards in Italy as they are widespread and result in considerable damage and fatalities every year. The Italian Landslide Inventory (IFFI) Project was launched in 1999 with the aim of identifying and mapping landslides over the entire Italian territory. The inventory currently holds over 480,000 landslides and has been available by means of Web services since 2005. The aim of this study is to define quality indices for evaluation of the homogeneity and completeness of the IFFI database. In order to estimate the completeness of the landslide attribute information, a heuristic approach has been used to assign weighting values to significant parameters selected from the landslide data sheet. The completeness and homogeneity of the landslide mapping has been evaluated by means of three different methods: an area-frequency distribution analysis; the proximity of the landslides surveyed to urban areas; variation of the landslide index within the same lithology. The quality indices have allowed identification of areas with a high level of completeness and critical areas in which the data collected have been underestimated or are not very accurate. The quality assessment of collected and stored data is essential in order to use the IFFI database for definition and implementation of landslide susceptibility models and for land use planning and management.  相似文献   

5.
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   

6.
《Engineering Geology》2007,89(3-4):200-217
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   

7.
Large deep-seated landslides can be reactivated during intense events, and they can evolve into destructive failures. They are generally difficult to recognize in the field, especially when they develop in densely forested areas. A detailed and constantly updated inventory map of such phenomena, and the recognition of their topographic signatures is absolutely a key tool for landslide risk mitigation.The aim of this work is to test in forested areas, the performance of the new automatic and objective methodology developed by Tarolli et al. (2012) for geomorphic features extraction (landslide crowns) from high resolution topography (LiDAR derived Digital Terrain Models – DTMs). The methodology is based on the detection of landslides through the use of thresholds obtained by the statistical analysis of variability of landform curvature. The study was conducted in a high-risk area located in the central-south Taiwan, where an accurate field survey on landsliding processes and a high-quality set of airborne laser scanner elevation data are available. The area has been chosen because some of the deep-seated landslides are located near human infrastructures and their reactivation is highly dangerous. Thanks to LiDAR’s capability to detect the bare ground elevation data in forested areas, it was possible to recognize in detail landslide features also in remote regions difficult to access. The results, if compared with the previous work of Tarolli et al. (2012), mainly focused on shallow landslides, and in a not forested area, indicate that for deep-seated landslides, where the crowns are more evident, and they are present at large scale, the tested methodology performs better (higher quality index). The method can be used to interactively assist the interpreter/user on the task of deep-seated landslide hazard mapping, and risk assessment planning of such regions.  相似文献   

8.

Landslides are natural hazards that represent a huge economic burden and cause the loss of human life around the world. In countries such as Colombia, the mass movement events that cause the highest number of deaths and economic losses are often related to river or stream flooding caused by landslides in basins. Therefore, it is necessary to develop tools that estimate and assess landslide risk in such areas. This study presents a methodology to assess the risk associated with landslides in streams or river basins. The hazard posed by landslides is evaluated considering probabilistic methods that include the effects of rainfall and earthquakes. In addition, this study assesses the probability of a sliding mass reaching riverbeds and the probability of riverbed obstruction. Vulnerability is then estimated using impact curves based on the obstruction height. Finally, risk is estimated as the probability that economic losses occur along the riverbed. This methodology is based on probability methods, such as the first-order second-moment (FOSM) method, and the punctual estimates method (PEM). The methodology was applied in the La Liboriana River basin, in the municipality of Salgar in the northwestern Colombian Andes. On May 18, 2015, this mountainous and tropical area suffered a flash flood caused by landslides in the basin, which killed more than 100 inhabitants and caused infrastructure damage and significant economic losses. The results suggest that the proposed method coherently assesses the hazard posed by landslides and that the expected losses are comparable with the records from previous events.

  相似文献   

9.
Gerardo Herrera  Rosa María Mateos  Juan Carlos García-Davalillo  Gilles Grandjean  Eleftheria Poyiadji  Raluca Maftei  Tatiana-Constantina Filipciuc  Mateja Jemec Auflič  Jernej Jež  Laszlo Podolszki  Alessandro Trigila  Carla Iadanza  Hugo Raetzo  Arben Kociu  Maria Przyłucka  Marcin Kułak  Michael Sheehy  Xavier M. Pellicer  Charise McKeown  Graham Ryan  Veronika Kopačková  Michaela Frei  Dirk Kuhn  Reginald L. Hermanns  Niki Koulermou  Colby A. Smith  Mats Engdahl  Pere Buxó  Marta Gonzalez  Claire Dashwood  Helen Reeves  Francesca Cigna  Pavel Liščák  Peter Pauditš  Vidas Mikulėnas  Vedad Demir  Margus Raha  Lídia Quental  Cvjetko Sandić  Balazs Fusi  Odd Are Jensen 《Landslides》2018,15(2):359-379
Landslides are one of the most widespread geohazards in Europe, producing significant social and economic impacts. Rapid population growth in urban areas throughout many countries in Europe and extreme climatic scenarios can considerably increase landslide risk in the near future. Variability exists between European countries in both the statutory treatment of landslide risk and the use of official assessment guidelines. This suggests that a European Landslides Directive that provides a common legal framework for dealing with landslides is necessary. With this long-term goal in mind, this work analyzes the landslide databases from the Geological Surveys of Europe focusing on their interoperability and completeness. The same landslide classification could be used for the 849,543 landslide records from the Geological Surveys, from which 36% are slides, 10% are falls, 20% are flows, 11% are complex slides, and 24% either remain unclassified or correspond to another typology. Most of them are mapped with the same symbol at a scale of 1:25,000 or greater, providing the necessary information to elaborate European-scale susceptibility maps for each landslide type. A landslide density map was produced for the available records from the Geological Surveys (LANDEN map) showing, for the first time, 210,544 km2 landslide-prone areas and 23,681 administrative areas where the Geological Surveys from Europe have recorded landslides. The comparison of this map with the European landslide susceptibility map (ELSUS 1000 v1) is successful for most of the territory (69.7%) showing certain variability between countries. This comparison also permitted the identification of 0.98 Mkm2 (28.9%) of landslide-susceptible areas without records from the Geological Surveys, which have been used to evaluate the landslide database completeness. The estimated completeness of the landslide databases (LDBs) from the Geological Surveys is 17%, varying between 1 and 55%. This variability is due to the different landslide strategies adopted by each country. In some of them, landslide mapping is systematic; others only record damaging landslides, whereas in others, landslide maps are only available for certain regions or local areas. Moreover, in most of the countries, LDBs from the Geological Surveys co-exist with others owned by a variety of public institutions producing LDBs at variable scales and formats. Hence, a greater coordination effort should be made by all the institutions working in landslide mapping to increase data integration and harmonization.  相似文献   

10.
Assessing landslide exposure in areas with limited landslide information   总被引:4,自引:2,他引:2  
Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. In this paper, a qualitative procedure for assessing the exposure of elements at risk is presented for an area of the Apulia region (Italy) where no temporal information on landslide occurrence is available. Given these limitations in data availability, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. The qualitative analysis was carried out using the spatial multi-criteria evaluation method in a global information system. A landslide susceptibility composite index map and four asset index maps (physical, social, economic and environmental) were generated separately through a hierarchical procedure of standardising and weighting. The four asset index maps were combined in order to obtain a qualitative weighted assets map, which, combined with the landslide susceptibility composite index map, has provided the final qualitative landslide exposure map. The resulting map represents the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to demonstrate how such an exposure map could be used in a basic risk assessment, a quantification of the economic losses at municipal level was carried out, and the temporal probability of landslides was estimated, on the basis of the expert knowledge. Although the proposed methodology for the exposure assessment did not consider the landslide run-out and vulnerability quantification, the results obtained allow to rank the municipalities in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.  相似文献   

11.
Landslide is a common hazard in the hilly regions, which causes heavy losses to life and properties every year. Since 1980, various researches and analyses have been carried out in the geographic information systems (GIS) environment to identify factors responsible for causing landslides. The important conditioning factors identified by the researchers are slope, geological, geomorphologic structures, and land use coupled with triggering factors like rainfall and a few of the anthropogenic activities. Almost all landslides vulnerability studies carried out so far used parameters of landslide events of the past as essential inputs and advanced methods like information value, regression analysis, fuzzy logic, etc. The present research is an attempt to investigate the landslide vulnerabilities in different slope areas with simple and realistic method of assignments of weights to the parameters based on experts?? opinion and generic logic, without using the parameters of past landslide events as inputs. The identified factors were assigned appropriate weights based on experts?? opinion and these weights were further balanced with respect to the Shannon??s entropy of their occurrences within the study area. The study area was finally classified into three zones namely least vulnerable zone, moderately vulnerable zone, and most vulnerable zone. When compared with the actual landslide history of the past, it was found that Shannon??s entropy applied zonation model matched to real landslide events with higher value of landslide density as compared to the model developed without Shannon??s entropy.  相似文献   

12.
This paper focuses on a specific event-based landslide inventory compiled after the May 2014 heavy rainfall episode in Serbia as a part of the post-disaster recovery actions. The inventory was completed for a total of 23 affected municipalities, and the municipality of Krupanj was selected as the location for a more detailed study. Three sources of data collection and analysis were used: a visual analysis of the post-event very high and high (VHR-HR) resolution images (Pléiades, WorldView-2 and SPOT 6), semi-automatic landslide recognition in pre- and post-event coarse resolution images (Landsat 8) and a landslide mapping field campaign. The results suggest that the visual and semi-automated analyses significantly contributed to the quality of the final inventory, including the associated planning strategies for conducting future field campaigns (as a final stage of the inventorying process), all the more so because the field-based and image-based inventories were focused on different types of landslides. In the most affected municipalities that had very high resolution satellite image coverage (19.52% of the whole study area), the density of the recognized landslides was approximately three times higher than that in those municipalities without satellite image coverage (where only field data were available). The total number of field-mapped landslides for the 23 municipalities was 1785, while image-based inventories, which were available only for the municipalities with satellite image coverage (77.43% of the study area), showed 1298 landslide records. The semi-automated landslide inventory in the test area (Krupanj municipality), which was based on coarse resolution multitemporal images (Landsat 8), counted 490 landslide instances and was in agreement with the visual analysis of the higher resolution images, with an overlap of approximately 40%. These results justify the use of preliminary inventorying via satellite image analysis and suggest a considerable potential use for preliminary visual and semi-automated landslide inventorying as an important supplement to field mapping.  相似文献   

13.
基于滑坡分类的西宁市滑坡易发性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
以往的滑坡易发性评价多以全体滑坡为研究对象,忽视了滑坡类型的区别。各评价指标对不同类型滑坡的影响程度不同,也导致指标权重无法精确地反映其对滑坡的影响。为更准确地对滑坡灾害进行空间预测,针对西宁市滑坡特征及发育机理,将全区滑坡分为土质滑坡和岩质滑坡;在野外实际调查的基础上,结合相关性分析,选取坡度、坡向、剖面曲率、平面曲率、工程地质岩组,以及滑坡点距断层、水系、道路的距离远近等8项因素作为滑坡易发性评价指标,并通过滑坡点分布密度和滑坡点相对分布密度,分析各评价指标分别对土质滑坡和岩质滑坡的影响;利用信息量模型,计算各评价指标对两类滑坡的信息量值,利用人工神经网络模型,赋予各评价指标对两类滑坡的权重;最后基于GIS平台利用加权信息量模型对研究区进行易发性评价。通过统计方法和ROC曲线法分别计算滑坡易发性评价成功率,结果表明:评价成功率可达到82.61%和82.30%,与未经滑坡分类的成功率比较,分别提高了10.9%和5.2%;同时,经过滑坡分类后,湟水河两岸地质条件较差的地区转变为滑坡高易发区。  相似文献   

14.

Landslide susceptibility analysis based on the strong ability of data mining of Geographic Information System (GIS) has become a hot topic in international landslide research. This paper used optimized decision tree and GIS databases to analyze the sensitivity in the northwest mountain areas of Yunnan province of China, and then discussed the formation mechanism of the landslide happened in the area. The translational landslide located in the area with an average gradient less than or equal to 28.7° was reclassified as a higher level 3 sensitive area than before according to the normalized different fault index (NDFI). The results showed that the data mining based on GIS 3D space–time information database can help to find the unique topography, geology hydrology and the other typical spatial information of some special typed of landslides such as translational landslides, thus it can illustrate the relationship between the landslides and their sensitivity factors. The improved landslide susceptibility analysis will provide a new method for identifying the genetic mechanism of landslide, and play an important role in the government regional planning and disaster prevention measures.

  相似文献   

15.
16.
The ancient landslide has endured long-term slope evolution which results in its complicated material and special rock-soil properties. The risk of ancient landslide reactivation is substantially increasing due to the increase of intensified human engineering activities and the frequency of extreme weather events. Many ancient landslides have been reactivated all over the world and led to serious fatalities and severe damage to many important engineering facilities such as transportation and hydropower engineering projects. On the basis of the analysis of the research situation about the ancient landslides at home and abroad, the main research advances were summarized including the regional developing laws and recognizing of the ancient landslides, the mechanics properties of ancient landslide body and related sliding zone, reactivation mechanism of ancient landslides, reactivating process and modeling analysis of ancient landslides, early recognization of ancient landslide reactivation, etc. To meet the demands of disaster prevention and reduction, three key scientific issues were put forward to be solved: ①automaticaly establishing the methodology and identification criterions for recognition of ancient landslide; ②revealing the reactivation mechanism of ancient landslide based on a new strength theory; ③establishing the early rapid recognition method and predictive model for ancient landslide reactivation. Solving the above mentioned scientific theory and methodology will facilitate the planning and site selection of major projects as well as the disaster prevention and reduction in ancient landslide developing areas.  相似文献   

17.
基于证据权法构建滑坡地质灾害评价模型,进行杭州市滑坡地质灾害危险性区划研究。主要数据源包括1930-2009年杭州市域采集到的1 905个地质灾害个例以及杭州市地质图、土地利用数据及数字高程模型(DEM)等。利用Arcgis空间分析及信息提取功能,筛选强降水、地层岩性、坡度、坡向、坡高、河网与道路缓冲等证据因子,并运用证据权法客观确定各因子权重, 最后通过Arc-WofE扩展模块对多种优选因子的叠加,计算任意格网单元的滑坡发生概率,实现对潜在滑坡点位的空间预测。经分离样本法验证,区划准确率为88.3%,分析结果与现有滑坡的分布情况比较吻合。据此表明证据权法在多指标评价及其权重确定等方面具有普适性,值得在滑坡地质灾害危险性区划等方面推广应用。  相似文献   

18.
The paper deals with a methodology for quantitative landslide hazard and risk assessments over wide-scale areas. The approach was designed to fulfil the following requirements: (1) rapid investigation of large study areas; (2) use of elementary information, in order to satisfy the first requirement and to ensure validation, repetition and real time updating of the assessments every time new data are available; (3) computation of the landslide frequency of occurrence, in order to compare objectively different hazard conditions and to minimize references to qualitative hazard attributes such as activity states. The idea of multi-temporal analysis set forth by Cardinali et al. (Nat Hazards Earth Syst Sci 2:57–72, 2002), has been stressed here to compute average recurrence time for individual landslides and to forecast their behaviour within reference time periods. The method is based on the observation of the landslide activity through aerial-photo surveys carried out in several time steps. The output is given by a landslide hazard map showing the mean return period of landslides reactivation. Assessing the hazard in a quantitative way allows for estimating quantitatively the risk as well; thus, the probability of the exposed elements (such as people and real estates) to suffer damages due to the occurrence of landslides can be calculated. The methodology here presented is illustrated with reference to a sample area in Central Italy (Umbria region), for which both the landslide hazard and risk for the human life are analysed and computed. Results show the powerful quantitative approach for assessing the exposure of human activities to the landslide threat for a best choice of the countermeasures needed to mitigate the risk.An erratum to this article can be found at  相似文献   

19.
A review of assessing landslide frequency for hazard zoning purposes   总被引:11,自引:0,他引:11  
The probability of occurrence is one of the key components of the risk equation. To assess this probability in landslide risk analysis, two different approaches have been traditionally used. In the first one, the occurrence of landslides is obtained by computing the probability of failure of a slope (or the reactivation of existing landslides). In the second one, which is the objective of this paper, the probability is obtained by means of the statistical analysis of past landslide events, specifically by the assessment of the past landslide frequency. In its turn, the temporal frequency of landslides may be determined based on the occurrence of landslides or from the recurrence of the landslide triggering events over a regional extent. Hazard assessment using frequency of landslides, which may be taken either individually or collectively, requires complete records of landslide events, which is difficult in some areas. Its main advantage is that it may be easily implemented for zoning. Frequency assessed from the recurrence of landslide triggers, does not require landslide series but it is necessary to establish reliable relations between the trigger, its magnitude and the occurrence of the landslides. The frequency of the landslide triggers can be directly used for landslide zoning. However, because it does not provide information on the spatial distribution of the potential landslides, it has to be combined with landslide susceptibility (spatial probability analysis) to perform landslide hazard zoning. Both the scale of work and availability of data affect the results of the landslide frequency and restrict the spatial resolution of frequency zoning as well. Magnitude–frequency relationships are fundamental elements for the quantitative assessment of both hazard and risk.  相似文献   

20.
Abstract: Landslide research at the British Geological Survey (BGS) is carried out through a number of activities, including surveying, database development and real-time monitoring of landslides. Landslide mapping across the UK has been carried out since BGS started geological mapping in 1835. Today, BGS geologists use a combination of remote sensing and ground-based investigations to survey landslides. The development of waterproof tablet computers (BGS·SIGMAmobile), with inbuilt GPS and GIS for field data capture provides an accurate and rapid mapping methodology for field surveys. Regional and national mapping of landslides is carried out in conjunction with site-specific monitoring, using terrestrial LiDAR and differential GPS technologies, which BGS has successfully developed for this application. In addition to surface monitoring, BGS is currently developing geophysical ground-imaging systems for landslide monitoring, which provide real-time information on subsurface changes prior to failure events. BGS’s mapping and monitoring activities directly feed into the BGS National Landslide Database, the most extensive source of information on landslides in Great Britain. It currently holds over 14?000 records of landslide events. By combining BGS’s corporate datasets with expert knowledge, BGS has developed a landslide hazard assessment tool, GeoSure, which provides information on the relative landslide hazard susceptibility at national scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号